深度学习实战——CNN+LSTM+Attention预测股票

本文介绍了一种使用PyTorch进行股票价格预测的方法,结合CNN、LSTM和不同类型的Attention机制。通过历史股票数据的open, low, close, high预测未来股票变化趋势。实验结果显示,加入SE注意力机制的模型表现较好,但存在过拟合问题。后续优化计划包括引入Transformer和应用滑动平均过滤噪声。" 122251822,350945,智慧水利三维可视化:决策支持与应急响应,"['人工智能', '大数据', '物联网', '数字孪生', '智慧水利']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

本文使用pytorch实现,根据历史股票的open,low,close,high数据预测未来股票的变化趋势。
代码在文末

用xgboost也跑了一下:机器学习实战——股票close预测

拟合结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### 使用LSTM模型实现桥梁健康监测或故障预测的方法 #### 数据预处理阶段 在实际应用中,桥梁健康监测通常涉及大量的传感器数据采集。这些数据可能包含噪声、异常值以及缺失值等问题。为了确保后续建模的有效性和准确性,在使用LSTM模型之前需要对原始数据进行必要的清洗和预处理。 对于缺失值问题,可以采用递归神经网络(RNN)中的变体——RIME算法来进行填补[^4]。该方法通过学习时间序列的上下文信息,能够更精确地估计缺失值并减少传统插值法带来的误差影响。此外,还可以通过对原始信号施加人工扰动后再由RIME完成修复操作作为额外的数据扩充策略之一,从而进一步提升最终训练所得模型之鲁棒性表现水平。 经过上述步骤之后,则需标准化输入变量范围使其适合于深度学习框架下的数值计算需求;这一步骤有助于加速收敛过程同时也改善了梯度下降过程中可能出现的一些不稳定现象的发生几率。 #### 构建LSTM模型架构 针对桥梁结构响应特性分析任务而言,可以选择双向长期短期记忆单元(BiLSTM),因为它不仅可以捕捉过去时刻的状态变化趋势还能兼顾未来一段时间内的潜在规律模式 。这种机制特别适用于那些具有复杂动力学行为的对象系统监控场合下 。 具体来说 ,整个流程如下所示: 1. **定义输入层**:考虑到每条记录都是一段时间间隔内连续采样的测量结果集合形式存在,所以这里我们将设定固定长度窗口大小w 来截取相应片段送入网络当中去; 2. **堆叠多个BiLSTM 层**: 这样做可以让高层提取更加抽象高层次语义级别的特征表示出来; 3. **全连接输出层设计**: 根据具体的业务场景目标不同(比如二元分类判断是否存在安全隐患 或者多元回归评估损伤程度等级),设置对应维度大小 的dense layer 并激活函数类型 (sigmoid /softmax etc.) 以下是Python代码示例展示如何搭建这样一个基本版别的BiLSTM用于解决前述提到过的挑战: ```python from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense,Bidirectional,LSTM,Dropout def build_bilstm_model(input_shape,num_classes): model =Sequential() # Add first Bidirectional LSTM Layer with dropout regularization model.add(Bidirectional(LSTM(units=64,return_sequences=True), input_shape=input_shape)) model.add(Dropout(rate=0.5)) # Second BiLSTM Layer without returning sequences since it's last one before dense layers. model.add(Bidirectional(LSTM(units=32))) # Output Fully Connected Layers depending upon task type i.e., classification vs regression if num_classes>1 : model.add(Dense(num_classes,activation='softmax')) # For multi-class classifications tasks else: model.add(Dense(1 , activation="sigmoid")) # Binary Classification Case return model # Example Usage Assuming Time Series Data Has Shape Of (Samples,Timesteps,Features) input_dim=(timesteps,features_count) num_output_categories=2 # Replace according actual requirement either binary or multiclass case. model_instance=build_bilstm_model(input_dim,num_output_categories) print(model_instance.summary()) ``` #### 训练与验证环节 一旦完成了前期准备工作即确定好超参数配置列表后就可以正式进入到最为核心的训练部分啦!在此期间建议采取早停(Early Stopping)技术防止过拟合情况发生;与此同时也可以借助交叉熵损失函数(Categorical Crossentropy Loss Function )配合Adam Optimizer共同作用达到理想效果最佳组合方案。 另外值得注意的一点就是关于测试集选取方面最好是从独立时间段抽取样本构成而不是简单随机划分方式这样更能反映真实世界环境下部署后的性能指标状况哦! ---
评论 88
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

只会git clone的程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值