参考教程:DataXujing/YOLO-v5: Pytorch YOLO v5 训练自己的数据集超详细教程!!! (提供PDF训练教程下载) (github.com)教程特别详细,这里做主要步骤总结,方便下次快速上手
主要流程
目录
一、pip install -U -r requirements.txt,安装如果报错csdn都能找到快速解决答案
三、选择使用的YOLO模型复制过来改下识别种类,有s、m、l、x几种,速度和精度是成反比的自己选择
四、weights里面要有预加载的模型,官方的Pt是一直更新的,这个是最初版本,github作者提供的有
五、完成了就开始train.py,根据配置自行调整epoch、batch、multi-sacle,下图是官方参数缩小10倍,是个电脑就能跑
六、跑完了结果保存在results.txt,Python printresultpng.py 运行一下结果可以画个图出来看看训练的效果(前提是你知道表达的是什么意思)
-
一、pip install -U -r requirements.txt,安装如果报错csdn都能找到快速解决答案
-
二、数据集按下面目录排列好
- 1.你的模型的配置文件
- 2.你的样本集(图片、标签)
-
三、选择使用的YOLO模型复制过来改下识别种类,有s、m、l、x几种,速度和精度是成反比的自己选择
四、weights里面要有预加载的模型,官方的Pt是一直更新的,这个是最初版本,github作者提供的有
五、完成了就开始train.py,根据配置自行调整epoch、batch、multi-sacle,下图是官方参数缩小10倍,是个电脑就能跑
六、跑完了结果保存在results.txt,Python printresultpng.py 运行一下结果可以画个图出来看看训练的效果(前提是你知道表达的是什么意思)
七、然后准备好测试图片和视频做预测,完成
想快速运行不用训练直接使用官方PT即可 python detect.py --weights weights/yolov5x.pt
自己训练的是best.pt