FAB_MAP算法的理论

目录
  • FAB_MAP算法介绍
  • 符号说明
  • 理论解释
FAB_MAP算法介绍

  FAB_MAP是经典的回环检测算法,算法的核心是Chow Liu Tree理论。Chow Liu Tree是特殊的一种图。Chow Liu tree理论的本质是考虑各个随机变量的依赖关系。而广泛应用的朴素贝叶斯算法是假设随机变量都是相互独立的。

  利用Chow Liu Tree理论来拟合离散概率分布的效果比朴素贝叶斯理论更好。因此,FAM_MAP算法的效果也更好。

符号说明

  在SLAM系统中,构建map通常是渐进地进行。在时间点 k k k,整个map是由 n k n_k nk个地点(Location)构成的,记 L k = { L 1 , . . . , L n k } L^k=\{L_1,...,L_{n_k}\} Lk={L1,...,Lnk},这里的地点指的是连续帧中有代表性的帧。

  对于图像 I k I_k Ik,利用词袋模型可表示为 Z k Z_k Zk,矢量量化后的形式为 Z k = { z 1   z 2 . . . z k } Z_k=\{z_1 \ z_2...z_k\} Zk={z1 z2...zk}
这里的 k k k代表的是整个字典的聚类(cluster)的数量,也代表着 k k k种特征。其中 z k {z_k} zk是二元变量。

  想象一下,对于一张图像,计算机可以用 v v v维特征 Z k Z_k Zk进行表示。而对于实际的图像 I k I_k Ik I k I_k Ik可能只是由 m m m维特征构成,剩下的 v − m v-m vm维都不存在,对应的 z j = 0 ( j = m + 1 , . . . , v ) z_{j}=0(j=m+1,...,v) zj=0(j=m+1,...,v)。如果这样考虑,那么每个 z j z_j zj都会对应一个隐变量 e j e_j ej e j e_j ej代表对应的特征实际存在或者不存在。

  在时刻 k k k,整个特征集合 Z k = { Z 1 , . . . , Z k } Z^k=\{Z_1,...,Z_k\} Zk={Z1,...,Zk}

理论解释

  在时刻 k k k,有一特征集合 Z k Z^k Zk,考虑此时能检测到回环 L i L_i Li的概率 p ( L i ∣ Z k ) p(L_i |Z^k) p(LiZk)

  根据递归贝叶斯公式有:

p ( L i ∣ Z k ) = p ( Z k ∣ L i , Z k − 1 ) p ( L i ∣ Z k − 1 ) p ( Z k ∣ Z k − 1 ) p(L_i |Z^k)=\frac{p(Z^k|L_i,Z^{k-1})p(L_i|Z^{k-1})}{p(Z_k|Z^{k-1})} p(LiZk)=p(ZkZk1)p(ZkLi,Zk1)p(LiZk1)

考虑似然函数 p ( Z k ∣ L i , Z k − 1 ) p(Z^k|L_i,Z^{k-1}) p(ZkLi,Zk1)

  假设地点当前的观测量与过去的观测量独立,所以有:

p ( Z k ∣ L i , Z k − 1 ) = p ( Z k ∣ L i ) p(Z^k|L_i,Z^{k-1})=p(Z^k|L_i) p(ZkLi,Zk1)=p(ZkLi)

  根据Chow Liu 估计理论有;

p ( Z k ∣ L i ) ≈ p ( z r ∣ L i ) ∏ q = 2 ∣ v ∣ p ( z q ∣ z p q , L i ) (1) p(Z^k|L_i) \approx p(z_r|L_i)\prod_{q=2}^{|v|}p(z_q|z_{p_q},L_i)\tag{1} p(ZkLi)p(zrLi)q=2vp(zqzpq,Li)(1)

  这里要说明的事,作者是利用Chow Liu Tree理论估计离散概率分布 p ( z 1 , . . . , z v ) p(z_1,...,z_v) p(z1,...,zv),整个概率分布是一颗树形结构, z r z_r zr是根节点, z p q z_{p_q} zpq z q z_q zq的parent。

  考虑 p ( z q ∣ z p q , L i ) p(z_q|z_{p_q},L_i) p(zqzpq,Li),根据全概率公式有:

p ( z q ∣ z p q , L i ) = ∑ s e q p ( z q ∣ e q = s e q , z p q , L i ) p ( e q = s e q ∣ z p q , L i ) (2) p(z_q|z_{p_q},L_i)=\sum_{s_{eq}}p(z_q|e_q=s_{eq},z_{p_q},L_i)p(e_q=s_{eq}|z_{pq},L_i)\tag{2} p(zqzpq,Li)=seqp(zqeq=seq,zpq,Li)p(eq=seqzpq,Li)(2)

  假设 e j e_j ej z i z_i zi是独立的( i ≠ j i \ne j i=j), L i L_i Li z q z_q zq独立,所以式 2 2 2可表达为:

p ( z q ∣ z p q , L i ) = ∑ s e q p ( z q ∣ e q = s e q , z p q ) p ( e q = s e q ∣ L i ) (3) p(z_q|z_{p_q},L_i)=\sum_{s_{eq}}p(z_q|e_q=s_{eq},z_{p_q})p(e_q=s_{eq}|L_i)\tag{3} p(zqzpq,Li)=seqp(zqeq=seq,zpq)p(eq=seqLi)(3)

  其中, p ( z q ∣ e q = s e q , z p q ) = ( 1 + α β ) − 1 p(z_q|e_q=s_{eq},z_{p_q})=(1+\frac{\alpha}{\beta})^{-1} p(zqeq=seq,zpq)=(1+βα)1

α = p ( z q ) p ( z q ˉ ∣ e q ) p ( z q ˉ ∣ z p ) \alpha=p(z_q)p(\bar{z_q}|e_q)p(\bar{z_q}|z_p) α=p(zq)p(zqˉeq)p(zqˉzp)

β = p ( z q ˉ ) p ( z q ∣ e q ) p ( z q ∣ z p ) \beta=p(\bar{z_q})p({z_q}|e_q)p({z_q}|z_p) β=p(zqˉ)p(zqeq)p(zqzp)

考虑先验概率 p ( L i ∣ Z k − 1 ) p(L_i|Z^{k-1}) p(LiZk1)

  作者把所以的地点分成两部分,一部分是已经观测过的 M M M,一部分是没有观测过的 M ˉ \bar{M} Mˉ。根据全概率公式有:

p ( Z k ∣ Z k − 1 ) = ∑ m ∈ M p ( Z k ∣ L m ) p ( L m ∣ Z k − 1 ) + ∑ u ∈ M p ( Z k ∣ L u ) p ( L u ∣ Z k − 1 ) (4) p(Z_k|Z^{k-1})=\sum_{m \in M}p(Z_k|L_m)p(L_m|Z^{k-1})+\sum_{u \in M}p(Z_k|L_u)p(L_u|Z^{k-1})\tag{4} p(ZkZk1)=mMp(ZkLm)p(LmZk1)+uMp(ZkLu)p(LuZk1)(4)

  其中 p ( Z k ∣ L m ) p ( L m ∣ Z k − 1 ) p(Z_k|L_m)p(L_m|Z^{k-1}) p(ZkLm)p(LmZk1)可以转换为求似然概率,而 p ( Z k ∣ L u ) p ( L u ∣ Z k − 1 ) p(Z_k|L_u)p(L_u|Z^{k-1}) p(ZkLu)p(LuZk1)是无法求解的,因为我们没有"未来的数据"。因此,作者利用随机采样的方法,在 M M M的样本内随机选取 n s n_s ns个样本代表 M ˉ \bar{M} Mˉ

  所以, ( 4 ) (4) (4)式可进一步近似为:

p ( Z k ∣ Z k − 1 ) ≈ ∑ m ∈ M p ( Z k ∣ L m ) p ( L m ∣ Z k − 1 ) + p ( L n e w ∣ Z k − 1 ) ∑ u = 1 n s p ( Z k ∣ L u ) n s p(Z_k|Z^{k-1})\approx\sum_{m \in M}p(Z_k|L_m)p(L_m|Z^{k-1})+p(L_{new}|Z^{k-1})\sum_{u =1}^{n_s}\frac{p(Z_k|L_u)}{n_s} p(ZkZk1)mMp(ZkLm)p(LmZk1)+p(LnewZk1)u=1nsnsp(ZkLu)

   p ( L n e w ∣ Z k − 1 ) p(L_{new}|Z^{k-1}) p(LnewZk1)是先验概率,文中取的是0.9。而 p ( Z k ∣ L u ) p(Z_k|L_u) p(ZkLu)可转换为求似然概率。

考虑概率 p ( Z k ∣ Z k − 1 ) p(Z_k|Z^{k-1}) p(ZkZk1)

  作者说明了此概率对结果的影响不大,作者取的是常值2800.

总结:
  利用上述结果,可以得到递归贝叶斯的计算公式,值得注意的是,以上的前提是需要利用数据集训练学习得到Chow Liu Tree。而这个学习的过程包括词袋模型的建立,似乎是一个有监督的学习过程。

参考文献:
[1] Cummins M , Newman P . FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance[J]. Int.j.robot.res, 2008, 27(6):647-665.

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值