一、背景与意义
芝麻作为一种重要的经济作物,在农业中占据着重要地位。其含油量高达 50% 以上,不仅是食品工业的主要原料,还可用于制作饲料、肥料等。然而,杂草的存在严重影响了芝麻的生长。
据统计,芝麻在同一地区连续种植一年以上,发病率达 50%,连续种植两年,发病率达 80%。而杂草会与芝麻争夺养分、水分等资源,影响芝麻的生长发育,降低产量。例如,夏芝麻、秋芝麻播种季节正值高温多雨季节,杂草萌发出土快,生长迅速,很容易形成草荒。播种后若遇连阴雨,间苗除草不及时或者不能人工除草,往往因草荒而被迫翻耕后改种其他农作物。
图像目标检测技术在芝麻作物与杂草管理中具有重要意义。随着计算机和信息技术的进步,机器视觉和图像处理相结合成为了当前杂草检测和识别的主流方法。通过图像目标检测技术,可以准确识别芝麻作物和各种杂草,为精准除草提供依据。这样可以避免农药对芝麻的误喷,减少农药浪费,保护生态环境和人类健康。同时,也可以提高芝麻的产量和质量,增加农民的收入。
二、检测方法概述
(一)基于深度学习的方法
基于 DINO(DETR with Improved Non-local Attention)的分类作物与杂草的轻量化端到端目标检测方法和装置,为芝麻田杂草检测提供了新的思路。首先,需要收集大量标注好的芝麻作物和杂草的数据集,确保数据的准确性和多样性。然后,加入轻量降噪网络,减少图像中的噪声干扰,提高目标检测的精度。同时,替换优化 backbone,使其更适合芝麻田的图像特征,提高模型的性能。通过这些步骤,可以实现对芝麻作物和杂草的快速、准确检测,为后续的除草工作提供有力支持。
(二)基于 YOLOV3 的方法
基于 YOLOV3 的杂草识别系统在芝麻田杂草检测中具有广泛的应用前景。在数据预处理阶段,对图像进行大小调整、色彩空间转换、噪声去除等操作,提高图像的质量。特征提取部分,使用深度学习模型对预处理后的图像进行特征提取,能够有效地提取出芝麻作物和杂草的特征。目标检测阶段,利用提取的特征进行目标检测,识别出图像中的杂草。例如,在实际应用中,可以使用 YOLOV3 模型对芝麻田的图像进行检测,准确识别出各种杂草,为精准除草提供依据。