【YOLOv12改进trick】专栏精选合集

🍄🍄《YOLOv12改进trick》专栏主要针对YOLO系列文章进行网络结构损失函数等优化创新,包含医学影像、遥感影像等多场景创新模块引入YOLO系列。

🌻🌻《YOLOv12改进trick》专栏包含【模型轻量化】【多尺度特征融合】【小目标、模糊目标、遮挡目标涨点】【骨干网络改进】【head改进】【损失目标改进】等多个方向进行改进优化,并对每种改进进行python代码修改,保证算法能顺利跑通(每一篇我都亲自跑通过验证过),赋跑通后的YOLO模型结构输出。

🌲🌲《YOLOv12改进trick》专栏改进思路来源是近两年较新的前沿论文创新模块,如CVPR2024、ICCV2024

🍁🍁《YOLOv12改进trick》专栏每一篇通过【设计动机】【模块优势】网络结构】【python代码修改处】【成功训练网络结构输出截图】5个方面进行介绍。


专栏目录链接:《YOLOv12改进trick》 

         该专栏持续更新,订阅者可私信获取合集里的全套python改进代码,以下是改进方向的文章目录快速通道,可通过链接跳转到内容详情。

        该专栏基于YOLOv12进行优化改进,改进内容也可适用于YOLO11、YOLOv8、YOLOv7、YOLOv5等。

👉模型轻量化

  1. 【YOLOv12改进trick】通道聚合FFN模块ChannelAggregationFFN引入YOLOv12
  2.  【YOLOv12改进trick】轻量级下采样ContextGuidedBlock_Down模块替换Conv模块
  3. 【YOLOv12改进trick】医学图像分割网络CMUNeXt与C3K2结合,构建C3k2_CMUNeXt模块引入YOLOv12
  4. 【YOLOv12改进trick】多尺度大核注意力机制MLKA模块引入YOLOv12
  5. 【YOLOv12改进trick】StarBlock引入YOLOv12
  6. 【YOLOv12改进trick】DynamicConv替换YOLOv12中的Conv模块

👉多尺度特征融合

  1. 【YOLOv12改进trick】多节门控聚合模块MultiOrderGatedAggregation模块引入YOLOv12
  2. 【YOLOv12改进trick】高效多尺度卷积注意力EMCAD_Block模块引入YOLOv12
  3.  【YOLOv12改进trick】遥感图像分割MSAA多尺度特征融合模块(即插即用)引入YOLOv12
  4. 【YOLOv12改进trick】医学图像分割网络CMUNeXt引入YOLOv12中,增强全局上下文信息
  5. 【YOLOv12改进trick】多尺度大核注意力机制MLKA模块引入YOLOv12
  6. 【YOLOv12改进trick】DynamicConv替换YOLOv12中的Conv模块
  7. 【YOLOv12改进trick】多核Inception网络PKINet,替换YOLO骨干网络

👉小目标、模糊目标、遮挡目标涨点

  1. 【YOLOv12改进trick】三重注意力TripletAttention引入YOLOv12中,实现遮挡目标检测涨点
  2.  【YOLOv12改进trick】多尺度大核注意力机制MLKA模块引入YOLOv12
  3. 【YOLOv12改进trick】超分辨率SAFM模块替换上采样模块,引入YOLOv12
  4. 【YOLOv12改进trick】DynamicConv替换YOLOv12中的Conv模块
  5. 【YOLOv12改进trick】多核Inception网络PKINet,替换YOLO骨干网络

👉骨干网络改进

  1. 【YOLOv12改进trick】通道聚合FFN模块ChannelAggregationFFN引入YOLOv12
  2. 【YOLOv12改进trick】高效多尺度卷积注意力EMCAD_Block模块引入YOLOv12【YOLOv12改进trick】高效多尺度卷积注意力EMCAD_Block模块引入YOLOv12
  3. 【YOLOv12改进trick】轻量级下采样ContextGuidedBlock_Down模块替换Conv模块
  4. 【YOLOv12改进trick】医学图像分割网络CMUNeXt与C3K2结合,构建C3k2_CMUNeXt模块引入YOLOv12
  5. 【YOLOv12改进trick】医学图像分割网络CMUNeXt引入YOLOv12中,增强全局上下文信息
  6. 【YOLOv12改进trick】三重注意力TripletAttention引入YOLOv12中,实现遮挡目标检测涨点
  7.  【YOLOv12改进trick】多尺度大核注意力机制MLKA模块引入YOLOv12【YOLOv12改进trick】StarBlock引入YOLOv12

👉head改进

  1.  【YOLOv12改进trick】遥感图像分割MSAA多尺度特征融合模块(即插即用)引入YOLOv12
  2.  【YOLOv12改进trick】超分辨率SAFM模块替换上采样模块,引入YOLOv12

👉损失函数改进

  1. 【YOLOv12改进trick】优化loss函数(AdaptiveThresholdFocalLoss)

👉YOLOv12网络训练自己的数据集(实操步骤)

  1. 【YOLO12全网首发】训练+测试行人摔倒

持续更新中,敬请关注。

### YOLOv8 改进方法及性能提升技巧 #### 添加 SwinTransformer 注意力机制 为了增强模型对于复杂场景的理解能力,在YOLOv8中引入了Swin Transformer作为骨干网络的一部分。这种架构通过自注意力机制能够捕捉图像中的长距离依赖关系,从而显著提高了小物体检测的效果以及整体精度[^1]。 ```python from mmdet.models import build_detector, build_backbone class CustomYOLOv8(YOLOv8): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # 替换默认backbone为带有swin transformer的版本 self.backbone = build_backbone(dict( type='SwinTransformer', embed_dims=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7)) ``` #### 双向特征金字塔 BiFPN 的应用 传统FPN仅支持单方向的信息传递,而BiFPN则实现了多尺度特征之间的双向融合。这不仅加强了不同层次间信息交流的有效性,还使得低层细节得以更好地保留下来用于最终预测阶段。实验表明该改动可以带来约1%-2% AP值的增长[^2]。 ```python import torch.nn as nn def add_bifpn(self): from mmcv.cnn.bricks import ConvModule layers = [] for i in range(2): # 堆叠两次BiFPN模块 layer = nn.ModuleDict({ f'top_down_{i}': TopDownPath(), f'bottom_up_{i}': BottomUpPath() }) layers.append(layer) return nn.Sequential(*layers) class TopDownPath(nn.Module): ... class BottomUpPath(nn.Module): ... ``` #### 创新性的 Head 设计与 Loss 函数调整 除了上述提到的技术外,《YOLOv8改进有效涨点》专栏还探讨了许多其他方面的优化措施,比如设计更加高效的头部结构(Head),采用更合理的损失函数形式等。这些改变共同作用下可以使模型达到更高的准确率并保持较快的速度表现。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zy_destiny

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值