import torch
a=torch.Tensor([[1,2,3,4,5],[6,7,8,9,10]])
b=torch.Tensor([[2,4,6,8,10],[1,3,5,7,9]])
逐元素相乘 element-wise multiplication
#element-wise multiplication
c=a*b
print('c.size:\t',c.size(),'\nc:\t',c)
输出:
c.size: torch.Size([2, 5])
c: tensor([[ 2., 8., 18., 32., 50.],
[ 6., 21., 40., 63., 90.]])
点乘dot product
#dot product
d=torch.sum(a*b,0)
e=torch.sum(a*b,1)
print('d.size:\t',d.size(),'\nd:\t',d)
print('e.size:\t',e.size(),'\ne:\t',e)
输出
d.size: torch.Size([5])
d: tensor([ 8., 29., 58., 95., 140.])
e.size: torch.Size([2])
e: tensor([110., 220.])
本文介绍了PyTorch中的两种乘法操作:逐元素相乘(element-wise multiplication)和点乘(dot product),分别阐述了它们的概念和使用场景,并提供了相关示例。
3772

被折叠的 条评论
为什么被折叠?



