Lebesgue外测度—实变函数与泛函分析

本文介绍了测度论的历史,特别是Lebesgue测度的诞生与发展,它作为现代数学分析的基础。Lebesgue外测度的概念被详细阐述,并证明了其非负性、单调性、次可加性和平移不变性等关键性质。这些性质为后来的测度论和积分理论奠定了基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

 19世纪下半叶,不少分析学家进行一系列扩充长度和面积概念的探索,逐渐形成测度的概念。1898年,博雷尔(Borel)建立了以为Borel点集的测度,法国数学家勒贝格(Lebesgue)在20世纪初叶系统地建立了测度论,并成功地就建立起新的积分理论。它发表于1902年的论文《积分、长度与面积》被公认为现代测度和积分理论的奠基之作。1915年,法国数学家弗雷歇(M.Frechet)提出一般 σ \sigma σ代数上建立测度,开始创立抽象测度理论。1918年左右希腊数学家卡拉泰奥多里(Caratheodory)关于外测度的研究,对于现代形式测度理论的形成起了关键作用。
R n \mathbb{R}^{n} Rn上点集的Lebesgue测度是关于点集的一种度量,它是长度、面积和体积的一种直接而自然的推广;它是Lebesgue积分理论的基石。Lebesgue积分是黎曼积分的推广,它将积分对象从黎曼可积函数类扩充到更大一类函数—可测函数类。

外测度

考虑 R n \mathbb{R}^{n} Rn中的开矩体 I = { ( x 1 , x 2 , ⋯   , x n ) ∣ a i < x i < b i , i + 1 , 2 , ⋯   } , I=\{(x_1,x_2,\cdots,x_n)|a_i<x_i<b_i,i+1,2,\cdots\}, I={(x1,x2,,xn)ai<xi<bi,i+1,2,},可定义其体积为 ∣ I ∣ = ∏ i = 1 n ( b i − a i ) |I|=\prod\limits_{i=1}^n(b_i-a_i) I=i=1n(biai)

定义1: E E E R n \mathbb{R}^n Rn的点集,若 { I k } k = 1 ∞ \{I_k\}^{\infty}_{k=1} {Ik}k=1 R n \mathbb{R}^n Rn中的一个开矩体,且是 E E E的一个覆盖,则它确定了一个非负实数 u = ∑ k = 1 ∞ ∣ I k ∣ u=\sum\limits_{k=1}^{\infty}|I_k| u=k=1Ik m ∗ ( E ) = inf ⁡ { u ∣ u = ∑ k = 1 ∞ ∣ I k ∣ , ⋃ k = 1 ∞ I k ⊃ E , I k 是 开 矩 体 } m^{*}(E)=\inf\left\{u|u=\sum\limits_{k=1}^{\infty}|I_k|,\bigcup\limits_{k=1}^{\infty}I_k \supset E, I_k是开矩体\right\} m(E)=inf{uu=k=1Ik,k=1IkE,Ik} m ∗ ( E ) m^{*}(E) m(E)是集合 E E E的Lebesgue外测度,简称外测度。

定理1: R n \mathbb{R}^n Rn中点集外测度具有以下性质:
(1)非负性: m ∗ ( E ) ≥ 0 m^{*}(E)\ge 0 m(E)0 m ∗ ( ∅ ) = 0 ; m^{*}(\emptyset)=0; m()=0;
(2)单调性:若 E 1 ⊂ E 2 E_1 \sub E_2 E1E2,则 m ∗ ( E 1 ) ≤ m ∗ ( E 2 ) ; m^{*}(E_1)\le m^{*}(E_2); m(E1)m(E2);
(3)次可加性: m ∗ ( ⋃ k = 1 ∞ E k ) ≤ ∑ k = 1 ∞ m ∗ ( E k ) ; m^{*}\left(\bigcup\limits_{k=1}^{\infty}E_k \right) \le\sum\limits_{k=1}^{\infty}m^{*}(E_k); m(k=1Ek)k=1m(Ek);
(4)平移不变性: m ∗ ( E + { x } ) = m ∗ ( E ) m^{*}(E+\{x\})=m^{*}(E) m(E+{x})=m(E) ∀ x ∈ R n \forall x\in\mathbb{R}^n xRn,其中 E + { x } = { y + x ∣ y ∈ E } E+\{x\}=\{y+x|y\in E\} E+{x}={y+xyE}

证明:
(1)由定义直接得出。
(2)当 E 1 ⊂ E 2 E_1 \sub E_2 E1E2时, E 2 E_2 E2的任一开矩列覆盖也是 E 1 E_1 E1的一个覆盖,由外测度定义显然得到性质(2)。
(3)不妨设 ∑ k = 1 ∞ m ∗ ( E k ) < + ∞ \sum\limits_{k=1}^{\infty}m^{*}(E_k)< +\infty k=1m(Ek)<+。对于 ∀ ε > 0 , k ∈ N \forall \varepsilon >0,k\in \mathbb{N} ε>0,kN,存在 E k E_k Ek的一个开矩列覆盖 { I k , j } j = 1 ∞ \{I_{k,j}\}_{j=1}^{\infty} {Ik,j}j=1 E k ∈ ⋃ j = 1 ∞ I k , j E_k\in \bigcup\limits_{j=1}^{\infty}I_{k,j} Ekj=1Ik,j,且 ∑ j = 1 ∞ ∣ I k , j ∣ ≤ m ∗ ( E k ) + ε 2 k \sum\limits_{j=1}^{\infty}|I_{k,j}|\le m^{*}(E_k)+\frac{\varepsilon}{2^k} j=1Ik,jm(Ek)+2kε由此可见 ⋃ k = 1 ∞ E k ⊂ ⋃ k , j = 1 ∞ , ∑ k , j = 1 ∞ ∣ I k , j ∣ ≤ ∑ k = 1 ∞ m ∗ ( E k ) + ε \bigcup\limits_{k=1}^{\infty}E_k \sub\bigcup\limits_{k,j=1}^{\infty},\quad \sum\limits_{k,j=1}^{\infty}|I_{k,j}|\le \sum\limits_{k=1}^{\infty}m^{*}(E_k)+\varepsilon k=1Ekk,j=1,k,j=1Ik,jk=1m(Ek)+ε ε \varepsilon ε的任意性,即得次可加性结论。
(4)因为矩体在平移下体积不变,故对于任意得矩体 I I I,有 ∣ I + { x } ∣ = ∣ I ∣ |I+\{x\}|=|I| I+{x}=I。于是对于 E E E得任意覆盖 { I k } \{I_k\} {Ik},经平移后 { I k + { x } } \{I_k+\{x\}\} {Ik+{x}} E + { x } E+\{x\} E+{x}的一个覆盖,从而 m ∗ ( E + { x } ) ≤ ∑ k = 1 ∞ ∣ I k + { x } ∣ = ∑ k = 1 ∞ ∣ I k ∣ m^{*}(E+\{x\})\le \sum\limits_{k=1}^{\infty}|I_k+\{x\}|=\sum\limits_{k=1}^{\infty}|I_k| m(E+{x})k=1Ik+{x}=k=1Ik E E E的外测度定义知, m ∗ ( E + { x } ) ≤ m ∗ ( E + { x } ) m^{*}(E+\{x\})\le m^{*}(E+\{x\}) m(E+{x})m(E+{x})反之,考虑将集合 E + { x } E+\{x\} E+{x}作平移 − x -x x,可得原点集 E E E。因而有 m ∗ ( E ) ≤ m ∗ ( E + { x } ) . m^{*}(E)\le m^{*}(E+\{x\}). m(E)m(E+{x}).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值