引言
19世纪下半叶,不少分析学家进行一系列扩充长度和面积概念的探索,逐渐形成测度的概念。1898年,博雷尔(Borel)建立了以为Borel点集的测度,法国数学家勒贝格(Lebesgue)在20世纪初叶系统地建立了测度论,并成功地就建立起新的积分理论。它发表于1902年的论文《积分、长度与面积》被公认为现代测度和积分理论的奠基之作。1915年,法国数学家弗雷歇(M.Frechet)提出一般 σ \sigma σ代数上建立测度,开始创立抽象测度理论。1918年左右希腊数学家卡拉泰奥多里(Caratheodory)关于外测度的研究,对于现代形式测度理论的形成起了关键作用。
R n \mathbb{R}^{n} Rn上点集的Lebesgue测度是关于点集的一种度量,它是长度、面积和体积的一种直接而自然的推广;它是Lebesgue积分理论的基石。Lebesgue积分是黎曼积分的推广,它将积分对象从黎曼可积函数类扩充到更大一类函数—可测函数类。
外测度
考虑 R n \mathbb{R}^{n} Rn中的开矩体 I = { ( x 1 , x 2 , ⋯ , x n ) ∣ a i < x i < b i , i + 1 , 2 , ⋯ } , I=\{(x_1,x_2,\cdots,x_n)|a_i<x_i<b_i,i+1,2,\cdots\}, I={(x1,x2,⋯,xn)∣ai<xi<bi,i+1,2,⋯},可定义其体积为 ∣ I ∣ = ∏ i = 1 n ( b i − a i ) |I|=\prod\limits_{i=1}^n(b_i-a_i) ∣I∣=i=1∏n(bi−ai)
定义1: 设 E E E是 R n \mathbb{R}^n Rn的点集,若 { I k } k = 1 ∞ \{I_k\}^{\infty}_{k=1} {Ik}k=1∞是 R n \mathbb{R}^n Rn中的一个开矩体,且是 E E E的一个覆盖,则它确定了一个非负实数 u = ∑ k = 1 ∞ ∣ I k ∣ u=\sum\limits_{k=1}^{\infty}|I_k| u=k=1∑∞∣Ik∣记 m ∗ ( E ) = inf { u ∣ u = ∑ k = 1 ∞ ∣ I k ∣ , ⋃ k = 1 ∞ I k ⊃ E , I k 是 开 矩 体 } m^{*}(E)=\inf\left\{u|u=\sum\limits_{k=1}^{\infty}|I_k|,\bigcup\limits_{k=1}^{\infty}I_k \supset E, I_k是开矩体\right\} m∗(E)=inf{u∣u=k=1∑∞∣Ik∣,k=1⋃∞Ik⊃E,Ik是开矩体}称 m ∗ ( E ) m^{*}(E) m∗(E)是集合 E E E的Lebesgue外测度,简称外测度。
定理1: R n \mathbb{R}^n Rn中点集外测度具有以下性质:
(1)非负性: m ∗ ( E ) ≥ 0 m^{*}(E)\ge 0 m∗(E)≥0, m ∗ ( ∅ ) = 0 ; m^{*}(\emptyset)=0; m∗(∅)=0;
(2)单调性:若 E 1 ⊂ E 2 E_1 \sub E_2 E1⊂E2,则 m ∗ ( E 1 ) ≤ m ∗ ( E 2 ) ; m^{*}(E_1)\le m^{*}(E_2); m∗(E1)≤m∗(E2);
(3)次可加性: m ∗ ( ⋃ k = 1 ∞ E k ) ≤ ∑ k = 1 ∞ m ∗ ( E k ) ; m^{*}\left(\bigcup\limits_{k=1}^{\infty}E_k \right) \le\sum\limits_{k=1}^{\infty}m^{*}(E_k); m∗(k=1⋃∞Ek)≤k=1∑∞m∗(Ek);
(4)平移不变性: m ∗ ( E + { x } ) = m ∗ ( E ) m^{*}(E+\{x\})=m^{*}(E) m∗(E+{x})=m∗(E), ∀ x ∈ R n \forall x\in\mathbb{R}^n ∀x∈Rn,其中 E + { x } = { y + x ∣ y ∈ E } E+\{x\}=\{y+x|y\in E\} E+{x}={y+x∣y∈E}
证明:
(1)由定义直接得出。
(2)当
E
1
⊂
E
2
E_1 \sub E_2
E1⊂E2时,
E
2
E_2
E2的任一开矩列覆盖也是
E
1
E_1
E1的一个覆盖,由外测度定义显然得到性质(2)。
(3)不妨设
∑
k
=
1
∞
m
∗
(
E
k
)
<
+
∞
\sum\limits_{k=1}^{\infty}m^{*}(E_k)< +\infty
k=1∑∞m∗(Ek)<+∞。对于
∀
ε
>
0
,
k
∈
N
\forall \varepsilon >0,k\in \mathbb{N}
∀ε>0,k∈N,存在
E
k
E_k
Ek的一个开矩列覆盖
{
I
k
,
j
}
j
=
1
∞
\{I_{k,j}\}_{j=1}^{\infty}
{Ik,j}j=1∞,
E
k
∈
⋃
j
=
1
∞
I
k
,
j
E_k\in \bigcup\limits_{j=1}^{\infty}I_{k,j}
Ek∈j=1⋃∞Ik,j,且
∑
j
=
1
∞
∣
I
k
,
j
∣
≤
m
∗
(
E
k
)
+
ε
2
k
\sum\limits_{j=1}^{\infty}|I_{k,j}|\le m^{*}(E_k)+\frac{\varepsilon}{2^k}
j=1∑∞∣Ik,j∣≤m∗(Ek)+2kε由此可见
⋃
k
=
1
∞
E
k
⊂
⋃
k
,
j
=
1
∞
,
∑
k
,
j
=
1
∞
∣
I
k
,
j
∣
≤
∑
k
=
1
∞
m
∗
(
E
k
)
+
ε
\bigcup\limits_{k=1}^{\infty}E_k \sub\bigcup\limits_{k,j=1}^{\infty},\quad \sum\limits_{k,j=1}^{\infty}|I_{k,j}|\le \sum\limits_{k=1}^{\infty}m^{*}(E_k)+\varepsilon
k=1⋃∞Ek⊂k,j=1⋃∞,k,j=1∑∞∣Ik,j∣≤k=1∑∞m∗(Ek)+ε由
ε
\varepsilon
ε的任意性,即得次可加性结论。
(4)因为矩体在平移下体积不变,故对于任意得矩体
I
I
I,有
∣
I
+
{
x
}
∣
=
∣
I
∣
|I+\{x\}|=|I|
∣I+{x}∣=∣I∣。于是对于
E
E
E得任意覆盖
{
I
k
}
\{I_k\}
{Ik},经平移后
{
I
k
+
{
x
}
}
\{I_k+\{x\}\}
{Ik+{x}}是
E
+
{
x
}
E+\{x\}
E+{x}的一个覆盖,从而
m
∗
(
E
+
{
x
}
)
≤
∑
k
=
1
∞
∣
I
k
+
{
x
}
∣
=
∑
k
=
1
∞
∣
I
k
∣
m^{*}(E+\{x\})\le \sum\limits_{k=1}^{\infty}|I_k+\{x\}|=\sum\limits_{k=1}^{\infty}|I_k|
m∗(E+{x})≤k=1∑∞∣Ik+{x}∣=k=1∑∞∣Ik∣由
E
E
E的外测度定义知,
m
∗
(
E
+
{
x
}
)
≤
m
∗
(
E
+
{
x
}
)
m^{*}(E+\{x\})\le m^{*}(E+\{x\})
m∗(E+{x})≤m∗(E+{x})反之,考虑将集合
E
+
{
x
}
E+\{x\}
E+{x}作平移
−
x
-x
−x,可得原点集
E
E
E。因而有
m
∗
(
E
)
≤
m
∗
(
E
+
{
x
}
)
.
m^{*}(E)\le m^{*}(E+\{x\}).
m∗(E)≤m∗(E+{x}).