测度上Lebesgue积分的确定

这篇博客探讨了测度论中的Lebesgue积分,从拓扑空间、σ-代数、可测映射等基本概念出发,阐述了函数序列的可测性和连续性的关系,以及Lebesgue积分的定义、性质和计算。通过定理证明了积分的极限行为,并讨论了测度空间的完备化过程。
摘要由CSDN通过智能技术生成

本文假定读者有基本的测度论知识,故仅对测度做简单介绍.

Definition 1  \text{Definition 1 } Definition 1 集合 X X X的子集族 τ \tau τ称为拓扑,若 τ \tau τ满足(1) ∅ , X ∈ τ \varnothing ,X\in \tau ,Xτ;(2)可列元素的交的封闭性;(3)有限、可列、或不可列元素的并的封闭性.
这样 ( X , τ ) (X,\tau) (X,τ)被称为一个拓扑空间,若 x ∈ τ x\in \tau xτ,称 x x x是开集.

Definition 2  \text{Definition 2 } Definition 2 集合 X X X的子集族 M \mathfrak{M} M称为 σ − \sigma- σ代数,若 τ \tau τ满足(1) X ∈ τ X\in \tau Xτ;(2)补集元素的封闭性(交集逆元);(3)可列元素的并的封闭性.
这样 ( X , M ) (X,\mathfrak{M}) (X,M)被称为一个可测空间,若 x ∈ M x\in \mathfrak{M} xM,称 x x x是可测集.

注: M \mathfrak{M} M满足除了不可列元素并的封闭性以外拓扑空间的所有性质.

Defintion 3  \text{Defintion 3 } Defintion 3  X X X是一个拓扑空间,则 X X X中存在一个最小的 σ − \sigma- σ代数 B \mathscr{B} B使得 τ ⊂ B \tau\subset\mathscr{B} τB.若 x ∈ B x\in \mathscr{B} xB,称 x x x Borel \text{Borel} Borel集.

Defintion 4  \text{Defintion 4 } Defintion 4  X , Y X,Y X,Y是拓扑空间,设 f : X → Y f:X\to Y f:XY,若 f − 1 ( τ Y ) ⊆ τ X f^{-1}(\tau_Y)\subseteq \tau_X f1(τY)τX,那么称 f f f是连续的.

Defintion 5  \text{Defintion 5 } Defintion 5  X , Y X,Y X,Y分别是可测空间和拓扑空间,设 f : X → Y f:X\to Y f:XY,若 f − 1 ( τ Y ) ⊆ M X f^{-1}(\tau_Y)\subseteq \mathfrak{M}_X f1(τY)MX,那么称 f f f是可测的.

Defintion 6  \text{Defintion 6 } Defintion 6  Y Y Y是拓扑空间, X X X上有一 B \mathscr{B} B,设 f : X → Y f:X\to Y f:XY,若 f − 1 ( τ Y ) ⊆ B X f^{-1}(\tau_Y)\subseteq \mathscr{B}_X f1(τY)BX,那么称 f f f Borel \text{Borel} Borel可测的.

设广义实域 R ‾ = R ∪ { − ∞ , + ∞ } \overline{R}=R\cup \{-\infty,+\infty\} R=R{ ,+},下界符号 inf ⁡ \inf inf,上界符号 sup ⁡ \sup sup,特征函数 X E ( x ) = [ x ∈ E ] \mathcal{X}_E(x)=[x\in E] XE(x)=[xE].若我们说 f : X → Y f:X\to Y f:XY可测,则假定 X , Y X,Y X,Y分别是可测空间和拓扑空间.

先给出一个引理:
Lemma 7  \text{Lemma 7 } Lemma 7  f : X → Y f:X\to Y f:XY X X X, Y Y Y的开集或可测集映射,那么在 X , Y X,Y X,Y容许的封闭性下.
x , y ∈ P ( P 是 M X 或 τ X ) x,y\in P(P是\mathfrak{M}_X或\tau_X) x,yP(PMXτX),那么 f ( x ∪ y ) = f ( x ) ∪ f ( y ) , f ( x ∩ y ) = f ( x ) ∩ f ( y ) f(x\cup y)=f(x)\cup f(y),f(x\cap y)=f(x)\cap f(y) f(xy)=f(x)f(y),f(xy)=f(x)f(y),
x , y ∈ P ( P 是 M Y 或 τ Y ) x,y\in P(P是\mathfrak{M}_Y或\tau_Y) x,yP(PMYτY),那么 f − 1 ( x ∪ y ) = f − 1 ( x ) ∪ f − 1 ( y ) , f − 1 ( x ∩ y ) = f − 1 ( x ) ∩ f − 1 ( y ) f^{-1}(x\cup y)=f^{-1}(x)\cup f^{-1}(y),f^{-1}(x\cap y)=f^{-1}(x)\cap f^{-1}(y) f1(xy)=f1(x)f1(y),f1(x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值