前言
我们在使用Pytorch的时候,模型训练时,不需要调用forward这个函数,只需要在实例化一个对象中传入对应的参数就可以自动调用 forward 函数。
class Module(nn.Module):
def __init__(self):
super().__init__()
# ......
def forward(self, x):
# ......
return x
data = ...... # 输入数据
# 实例化一个对象
model = Module()
# 前向传播
model(data)
# 而不是使用下面的
# model.forward(data)
但是实际上model(data)是等价于model.forward(data),这是为什么呢???下面我们来分析一下原因。
forward函数
model(data)之所以等价于model.forward(data),就是因为在类(class)中使用了__call__函数,对__call__函数不懂得可以点击链接:可调用:__call__函数
class Student:
def __call__(self):
print('I can be called like a function')
a = Student()
a()
输出结果:
I can be called like a function
由上面的__call__函数可知,我们可以将forward函数放到__call__函数中进行调用:
class Student:
def __call__(self, param):
print('I can called like a function')
print('传入参数的类型是:{} 值为: {}'.format(type(param), param))
res = self.forward(param)
return res
def forward(self, input_):
print('forward 函数被调用了')
print('in forward, 传入参数类型是:{} 值为: {}'.format(type(input_), input_))
return input_
a = Student()
input_param = a('data')
print("对象a传入的参数是:", input_param)
输出结果:
I can called like a function
传入参数的类型是:<class 'str'> 值为: data
forward 函数被调用了
in forward, 传入参数类型是:<class 'str'> 值为: data
对象a传入的参数是: data
到这里我们就可以明白了为什么model(data)等价于model.forward(data),是因为__call__函数中调用了forward函数。