《A Discussion on Solving Partial Differential Equations using Neural Networks》梳理

(读本论文,需要有深度学习的基础,并了解偏微分方程的求解)

摘要

提出问题:神经网络可以学习求解偏微分方程(PDE)吗?
研究问题:本文,用泊松方程和稳定的Navier-Stokes方程来研究这个问题
本文贡献:
(1)用数值实验表明(<500个可学会的参数)的神经网络能精确地学习PDEs的复杂解
(2)研究了随机初始值对神经网络质量的影响
(3)在本工作中研究损失函数的适用性
(4)相比传统数值方法,用神经网络求解PDE的优缺点
(5)提出一些未来工作的可能方向

1.引言

大多数PDEs没有可解析的解,可以用传统数值方法(基于域的离散化)来逼近解,这些传统数值方法在低维的规则区域上十分有效,对于复杂区域和高维情况就不够理想。

2.算法

(1)偏微分方程介绍

这是带有狄里克雷问题边界条件的偏微分方程,d是空间维数,N是一个微分算子,f(x)、g(x)已知,求u(x)
(狄里克雷边界条件,https://blog.csdn.net/qq_38517015/article/details/101362131)

(2)算法
在这里插入图片描述用u^逼近u

(3)损失函数
在这里插入图片描述
在这里插入图片描述
罚函数法把有约束最优化问题转化为求解无约束最优化问题
(罚函数法,https://blog.csdn.net/qq_38517015/article/details/101389370)
上面的损失函数是下面这个表达式的Monte Carlo逼近
(Monte Carlo方法,https://blog.csdn.net/qq_38517015/article/details/101345140)
在这里插入图片描述

3.实验

(1)基本介绍
a.在本工作中,使用 Broyden–Fletcher–Goldfarb–Shanno (BFGS) 算法来优化网络参数;使用sigmoid激活函数和Xavier初始值(BFGS、激活函数、初始值这些概念都是神经网络中的基础概念,待了解)

b.使用启发式的有限差分法(FDM)来测量近似解的质量
(FDM https://blog.csdn.net/qq_38517015/article/details/101421305)
在这里插入图片描述
在这里插入图片描述
对于以下两个问题,该区间是一个矩形区域,网格点的选取:对于相邻点,有d-1个坐标相同,另一个坐标相差0.01

(2)求解泊松方程
a.泊松方程
在这里插入图片描述
b.一些参数
d=2,研究二维空间的泊松方程
神经网络的隐藏层数为1-4个,每个隐藏层有16个单元(隐藏层、单元待了解)
数据集有四个,1000、2000、4000、8000

c.损失函数
在这里插入图片描述
在这里插入图片描述
因为:原本的损失函数远远小于1,不能有效地更新神经网络的权值

d.构造问题

f=2Π^2sin(Πx1)sin(Πx2)
在这里插入图片描述
e.实验结果及结论
table1,最好的结果出现在数据集3只有一个隐藏层的情况
figure1,在右上角的误差最大,修改损失函数

在这里插入图片描述
table2
为了研究初始权重对神经网络质量的影响,用42-51这十个随机种子来训练十个神经网络,然后对损失函数求平均值和方差
平均值最小的情况仍是在数据集3中
标准差和平均值是一个数量级, 可见各神经网络间的差别很大,所以说明初始权重对神经网络质量有很大影响
table2最后一行
kendall系数(https://blog.csdn.net/qq_38517015/article/details/101379012)
在这里插入图片描述
求kendall系数得到以下两个式子的相关性
在这里插入图片描述
table2中系数均<0.6,表示这两个式子之间没有很强的相关性

(3)求解稳定的Navier-Stokes方程(跟泊松方程求解过程差不多)
a.方程在这里插入图片描述
b.损失函数
在这里插入图片描述
c.构造问题
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
d.实验结果及结论略

4.讨论与未来工作

(1)以上得出结论:当使用BFGS算法来优化时,使用小的神经网络可以学习偏微分方程的复杂解
(2)
在这里插入图片描述
相关性低,修改损失函数,原本时1/Ncorner,这里为η/Ncorner
在这里插入图片描述
(3)算法的随机性可能是个缺点,但是本工作中训练10个神经网络然后求平均值的做法也能得到较好的效果
未来的一项工作是把这种平均化的方法和阻止BFGS求解器过早结束迭代的方法结合起来
(4)有些连续采样的区域,不是很好学习,近似解不够理想
可以引入密度函数、Markov Chain Monte Carlo方法来采样
也可以用平均化的方法在较高不确定区域采样
(5)优化过程是瓶颈
可能原因:用罚函数法把约束问题转化为了非约束问题
可以用Lagrangian descent方法解决带约束的最优问题(n是迭代次数?)
在这里插入图片描述
此时的损失函数
在这里插入图片描述
(6)神经网络求解PDE的优缺点
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值