【大模型推理】Ring all-reduce

https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/#ref-4

1. ALL reduce , reduce, broadcast 概念

Introduction

在过去的几年中,神经网络已经被证明是解决各种问题的令人难以置信的有效工具,并且在规模和计算需求上都迅速增长。2012年,用于图像识别的SuperVision卷积网络在物体识别方面取得了巨大的进展,使用了两个GPU一周时间和6000万个参数1。2016年,研究人员在语言建模方面取得了突破性进展,该网络具有超过10亿个参数,在32个GPU上训练了三周2。在百度研究院的硅谷AI Lab内部,2014年我们的Deep Voice语音识别系统的第一次迭代大约有1100万个参数5,而一年后的下一次迭代已经增长到了1亿个参数3。

随着神经网络的参数数量和计算需求的增长,在许多节点和许多GPU上高效地并行训练神经网络变得越来越重要,因为等待几个月来训练大型网络会减慢实验速度并限制进一步发展。在这篇博文中,我们介绍了一种来自高性能计算(HPC)领域的技术,并演示了如何将其应用于深度学习,以在神经网络训练中实现显著的性能提升。

The Communication Problem

在将神经网络的训练并行化到许多GPU上时,您必须选择如何将不同的操作分布到可供您使用的不同GPU上。在这里,我们重点介绍一种称为数据并行随机梯度下降(SGD)的技术。与标准SGD中一样,梯度下降是对数据的子集(minibatches)进行的,需要多次迭代才能遍历整个数据集。然而,在数据并行训练中,每个GPU都有整个神经网络模型的完整副本,并且对于每次迭代,只分配minibatch中样本的一个子集。对于每次迭代,每个GPU在其数据上运行网络的前向传播,然后是误差反向传播,以计算相对于网络参数的损失梯度。最后,GPU相互通信,对不同GPU计算的梯度进行平均,将平均后的梯度应用于权重以获得新的权重。所有GPU都以锁步方式进行迭代,一旦一个GPU完成了它的迭代,它必须等待所有其他GPU完成它们的迭代,以便权重可以正确更新。这相当于在单个GPU上执行SGD,但我们通过将数据分布在多个GPU上并并行执行计算来获得加速比。

当您只有两个GPU并且参数以兆字节数据测量时,这些GPU如何通信可能并不重要。但是,当你的模型有数十亿个参数时,梯度可能会占用GB的空间(因为每个参数都有一个梯度值),而且你要协调几十个GPU,通信机制就变得至关重要了。

例如,考虑可能的最直接的通信机制。每个GPU在其minibatch的子集上计算梯度。然后,每个GPU将其梯度发送到单个GPU,该GPU获取所有梯度的平均值,并将平均值发送回所有其他GPU。
在这里插入图片描述

Data transfer to and from a single reducer GPU

需要发送的数据越多,发送的时间就越长;每个通信信道都有一个最大吞吐量(带宽)。例如,一个好的互联网连接可以提供每秒15兆的带宽,而千兆以太网连接可以提供每秒125兆的带宽。HPC群集中的专用网络硬件(如Infiniband)可在节点之

<think>嗯,用户这次的问题聚焦在大模型分布式推理的具体实现方法和框架上。从引用的三篇文献来看,用户显然已经做过一些调研,但需要更系统的技术梳理。有趣的是,用户特意强调“不是真正的需求”,说明ta可能被之前搜索到的冗余信息困扰过。用户的三条引用其实勾勒出了技术图谱:引用[1]讲分布式训练与推理的共性问题,引用[2]提到传统推理服务的局限,引用[3]给出Ray这种具体工具。不过用户明确表示这些“仅供参考”,说明ta需要的是脱离具体引用的方法论总结。考虑到用户上次问题涉及模型压缩和并行策略,这次应该延续技术深度。分布式推理的核心矛盾在于:大模型的参数量远超单卡容量,而推理的实时性要求又比训练更严苛。需要重点展开的维度包括:-计算并行(模型/数据/流水线三种并行如何组合)-显存优化(Zero-Inference这类技术)-请求调度(动态批处理的重要性)注意到用户提到“框架”,RayServe确实值得展开,但补充FasterTransformer会更全面——毕竟用户引用的[2]提到LLM批处理瓶颈,而FT的块处理技术能缓解这个问题。用户没提具体模型规模,所以举例时应该覆盖70B级别的通用方案(如Megatron-DeepSpeed)和千亿参数的特殊方案(如MoE的专家并行)。另外ta可能隐含工程落地需求,得强调容错机制和弹性伸缩这类生产特性。最后的技术路线图要体现层次感:从单卡LoRA微调模型,到中等规模流水线并行,再到万卡级专家并行系统。用户似乎偏好代码实例,所以RayServe的示例保留,但补上vLLM的提示更实用——毕竟用户引用[3]就是Ray相关。</think> 以下是关于大模型分布式推理的方法与框架的系统性总结,结合核心技术原理、主流框架及实现要点: --- ### **一、分布式推理的核心方法** #### 1. **模型并行(Model Parallelism)** - **原理**:将大型模型拆分成多个子模块,分配到不同设备(如GPU)执行。 - **张量并行(Tensor Parallelism)**: 如 **Megatron-LM** 的方案,将矩阵运算按行或列拆分(例如 $Y = XA + B$ 中,将权重矩阵 $A$ 切分到多个设备计算)[^1]。 - **流水线并行(Pipeline Parallelism)**: 如 **GPipe**,将模型按层划分,不同设备执行不同层,通过微批次(micro-batching)隐藏通信延迟[^1]。 #### 2. **数据并行(Data Parallelism)** - **原理**:多设备同时处理不同输入数据,适用于可独立计算的推理任务。 - **动态批处理(Dynamic Batching)**: 如 **NVIDIA Triton** 的机制,将多个请求合并为一个大批次(batch),提高GPU利用率[^2]。 #### 3. **内存优化技术** - **Zero-Inference(类Zero-Offload)**: 将模型参数、优化器状态卸载到CPU内存或NVMe存储,仅在推理时加载到GPU显存。 - **KV缓存共享**: 在生成式任务中(如GPT),多个请求共享注意力键值缓存(KV Cache),减少重复计算。 --- ### **二、主流分布式推理框架** #### 1. **NVIDIA Triton Inference Server** - **核心能力**: - 支持动态批处理、并发模型执行。 - 集成TensorRT加速,优化LLM推理延迟。 - **适用场景**:高吞吐工业级部署[^2]。 - **代码示例(配置动态批处理)**: ```python # 配置文件中启用动态批处理 dynamic_batching { max_queue_delay_microseconds: 1000 # 最大等待1ms组批 } ``` #### 2. **Ray Serve** - **核心能力**: - 基于Actor模型实现分布式服务。 - 自动扩缩容、容错恢复。 - **适合场景**:云原生弹性推理[^3]。 - **部署流程**: ```python from ray import serve @serve.deployment class LLMDeployment: def __init__(self, model_path): self.model = load_model(model_path) async def __call__(self, request): data = await request.json() return self.model.generate(data["text"]) serve.run(LLMDeployment.bind("path/to/model")) ``` #### 3. **DeepSpeed Inference** - **核心能力**: - 集成ZeRO-Offload技术,支持百亿参数模型单卡推理- 张量并行+高效CUDA内核优化。 - **示例(启动推理引擎)**: ```python import deepspeed engine = deepspeed.init_inference(model=llama_model, tensor_parallel=[2,4]) # 2节点x4 GPU output = engine("Input text") ``` #### 4. **vLLM (Vectorized LLM Serving)** - **创新点**: - **PagedAttention**:类似虚拟内存分页管理KV缓存,显存利用率提升4倍。 - 支持连续批处理(continuous batching),动态插入/移除请求。 - **性能**:比HuggingFace Transformers快24倍[^1]。 --- ### **三、关键技术挑战与解决方案** | **问题** | **解决方案** | |--------------------------|---------------------------------------------| | **通信瓶颈** | 异步梯度聚合(如Ring-AllReduce) | | **显存不足** | Zero-Offload + 量化(INT8/FP16) | | **请求延迟不均衡** | 动态批处理 + 优先级调度 | | **容错性** | Ray Serve的Actor自动重启 + 检查点保存机制[^3] | --- ### **四、实践建议** 1. **中小模型(<30B参数)**: Triton动态批处理 + FP16量化,单节点多卡可满足需求。 2. **百亿级模型**: 必用张量并行(Megatron方案)或DeepSpeed Inference。 3. **千亿参数稀疏模型**: 采用MoE(Mixture of Experts)架构,配合专家并行(Expert Parallelism)。 --- ### **技术演进趋势** - **计算与存储分离**:推理引擎解耦参数存储(CPU内存池)与计算(GPU集群)。 - **硬件协同设计**:NVIDIA Grace Hopper GPU等异构架构优化显存带宽。 --- **相关问题** 1. Triton如何优化大模型的动态批处理性能? 2. 张量并行与流水线并行的混合部署如何实现? 3. KV缓存共享机制如何减少Transformer推理时的重复计算? 4. 如何评估分布式推理系统的通信开销与加速比? [^1]: 单机多卡与分布式训练对比(参数服务器、异步SGD等) [^2]: Triton的批处理优化与显存管理机制 [^3]: Ray Serve的弹性扩缩容与容错设计
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值