改进YOLOv5、YOLOv8系列:21.添加CBAM注意力机制

最新创新点改进推荐

-💡统一使用 YOLO 代码框架,结合不同模块来构建不同的YOLO目标检测模型。

🔥 《芒果书》系列改进专栏内的改进文章,均包含多种模型改进方式,均适用于YOLOv3YOLOv4YOLORYOLOXYOLOv5YOLOv7YOLOv8 改进(重点)!!!

🔥 专栏创新点教程 均有不少同学反应和我说已经在自己的数据集上有效涨点啦!! 包括COCO数据集也能涨点

所有文章博客均包含 改进源代码部分,一键训练即可

🔥 对应专栏订阅的越早,就可以越早使用原创创新点去改进模型,抢先一步

YOLOv8 + 改进注意力机制

详细内容
参考这篇博客:点击查看详情:YOLOv5改进、YOLOv7、YOLOv8改进|YOLO改进超过50种注意力机制,全篇共计30万字(内附改进源代码),原创改进50种Attention注意力机制和Transformer自注意力机制


YOLOv5、YOLOv7、YOLOv8 模型全系列最新改进方式教程(内附原代码)

🔥 《芒果书》系列改进专栏内的改进文章

专栏地址:独家全网首发专栏《芒果YOLOv8深度改进教程》🍊

专栏地址:独家全网首发专栏《芒果YOLOv5深度改进教程》🥝

专栏地址:独家全网首发专栏《芒果YOLOv7深度改进教程》🍉


YOLOv5、YOLOv7 + 注意力机制一览

YOLOv5 + ShuffleAttention注意力机制
博客链接🔗🌟:改进YOLOv5系列:12.添加ShuffleAttention注意力机制
YOLOv5 + CrissCrossAttention注意力机制
博客链接🔗🌟:改进YOLOv5系列:13.添加CrissCrossAttention注意力机制
YOLOv5 + S2-MLPv2注意力机制
博客链接🔗🌟:改进YOLOv5系列:14.添加S2-MLPv2注意力机制
YOLOv5 + SimAM注意力机制
博客链接🔗🌟:改进YOLOv5系列:15.添加SimAM注意力机制
YOLOv5 + SKAttention注意力机制
博客链接🔗🌟:改进YOLOv5系列:16.添加SKAttention注意力机制
YOLOv5 + NAMAttention注意力机制
博客链接🔗🌟:改进YOLOv5系列:17.添加NAMAttention注意力机制
YOLOv5 + SOCA注意力机制
博客链接🔗🌟:改进YOLOv5系列:18.添加SOCA注意力机制
YOLOv5 + CBAM注意力机制
博客链接🔗🌟:改进YOLOv5系列:18.添加CBAM注意力机制
YOLOv5 + SEAttention注意力机制
博客链接🔗🌟:改进YOLOv5系列:19.添加SEAttention注意力机制
YOLOv5 + GAMAttention注意力机制
博客链接🔗🌟:改进YOLOv5系列:20.添加GAMAttention注意力机制
YOLOv5 + CA注意力机制
博客链接🔗🌟:github
YOLOv5 + ECA注意力机制 博客链接🔗🌟:github
更多模块详细解释持续更新中。。。

之后继续更新🔥🔥🔥

第一种、YOLOv5使用CBAM注意力机制

CBAM注意力机制原理图

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

1.1增加以下yolov5_cbam.yaml文件

# YOLOv5 🚀 by YOLOAir, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
   [-1, 1, CBAM, [1024]],

   [[17, 20, 24], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]


1.2common.py配置

新增一个cbam.py文件,新增以下代码

然后 在./models/common.py文件中 导入模块 CBAM

class ChannelAttentionModule(nn.Module):
    def __init__(self, c1, reduction=16):
        super(ChannelAttentionModule, self).__init__()
        mid_channel = c1 // reduction
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)

        self.shared_MLP = nn.Sequential(
            nn.Linear(in_features=c1, out_features=mid_channel),
            nn.LeakyReLU(0.1, inplace=True),
            nn.Linear(in_features=mid_channel, out_features=c1)
        )
        self.act = nn.Sigmoid()
        #self.act=nn.SiLU()
    def forward(self, x):
        avgout = self.shared_MLP(self.avg_pool(x).view(x.size(0),-1)).unsqueeze(2).unsqueeze(3)
        maxout = self.shared_MLP(self.max_pool(x).view(x.size(0),-1)).unsqueeze(2).unsqueeze(3)
        return self.act(avgout + maxout)
        
class SpatialAttentionModule(nn.Module):
    def __init__(self):
        super(SpatialAttentionModule, self).__init__()
        self.conv2d = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=7, stride=1, padding=3)
        self.act = nn.Sigmoid()
    def forward(self, x):
        avgout = torch.mean(x, dim=1, keepdim=True)
        maxout, _ = torch.max(x, dim=1, keepdim=True)
        out = torch.cat([avgout, maxout], dim=1)
        out = self.act(self.conv2d(out))
        return out

class CBAM(nn.Module):
    def __init__(self, c1,c2):
        super(CBAM, self).__init__()
        self.channel_attention = ChannelAttentionModule(c1)
        self.spatial_attention = SpatialAttentionModule()

    def forward(self, x):
        out = self.channel_attention(x) * x
        out = self.spatial_attention(out) * out
        return out
  

1.3yolo.py配置

在 models/yolo.py文件夹下

  • 定位到parse_model函数中
  • for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):内部
  • 对应位置 下方只需要新增以下代码
elif m is CBAM:
    c1, c2 = ch[f], args[0]
    if c2 != no:
        c2 = make_divisible(c2 * gw, 8)
    args = [c1, c2]

1.4训练模型

python train.py --cfg yolov5_cbam.yaml

YOLOv8 + 改进注意力机制

详细内容

参考这篇博客:点击查看详情:YOLOv5改进、YOLOv7、YOLOv8改进|YOLO改进超过50种注意力机制,全篇共计30万字(内附改进源代码),原创改进50种Attention注意力机制和Transformer自注意力机制

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果汁没有芒果

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值