YOLO11<全网最简单上手>从零开始训练篇 | 新手入门强烈推荐,使用Autodl云服务器,运行两行代码即可,一键快速&训练推理- 官方YOLO11 项目运行流程

从零开始训练 YOLO11 - 最新版本教程说明

YOLO11从零开始训练篇 | 新手入门强烈推荐,使用Autodl云服务器,运行两行代码即可,训练YOLO11项目&一键快速&训练推理-使用🚀

本文适用Linux:从零开始使用Windows/Linux训练 YOLO11 算法项目


芒果YOLO11改进专栏完整目录链接👉:《芒果YOLO11原创改进专栏》🌟🌟🌟

🚀🚀🚀订阅一个畅享芒果改进所有YOLO11内容


官方 YOLO11 算法

https://github.com/ultralytics/ultralytics
在这里插入图片描述

打开Autodl 云服务器

首先 点击这个链接

https://www.codewithgpu.com/i/ultralytics/ultralytics/YOLO11

如下图所示:
在这里插入图片描述


或者在创建实例的时候,在社区镜像中,搜索关键词 ”YOLO11“,即可一键创建YOLO11 环境配置好的实例

在这里插入图片描述

只需要执行两行代码,一键运行 YOLO11 项目


全网最简单上手的一键运行 官方YOLO11 项目运行流程

不需要配置环境,一键训练即可


实例内 有个YOLO11使用必看的说明,大家可以先看看,和下面的内容一样

第一步:打开控制台,命令行输入

cd YOLOv11

第二步:训练代码,输入

python train_yolo11.py

即可以开始训练了

第三步:推理代码,输入

python predict_yolo11.py

默认使用coco128数据集作为验证,有需要可以换成自己的数据集路径进行训练

可以根据自己使用的数据集进行修改train_v8.py里面的参数

训练代码
修改数据集路径和网络模型权重路径

一键训练就是这么简单

参考:https://www.codewithgpu.com/i/ultralytics/ultralytics/YOLO11

### 在 AutoDL 平台上训练或部署 YOLOv8 模型 YOLOv8 是 Ultralytics 提供的一个先进的目标检测框架,基于 PyTorch 实现。要在 AutoDL运行 YOLOv8 模型,可以按照以下方法操作: #### 1. 创建并配置环境 在 AutoDL 的云端环境中创建一个新的项目,并安装必要的依赖项。YOLOv8 需要 Python 和 PyTorch 支持。 ```bash pip install ultralytics torch torchvision ``` 此命令会自动下载并安装最新版本的 `ultralytics` 库以及其所需的依赖项[^1]。 #### 2. 下载预训练权重(可选) 如果计划微调现有模型,则需要先加载官方提供的预训练权重文件。可以通过以下方式获取默认权重: ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') # 加载小型预训练模型 ``` 上述代码片段展示了如何通过名称直接加载特定大小的 YOLOv8 版本(如 nano, small, medium)。更多细节参见 Ultralytics 官方文档[^2]。 #### 3. 准备数据集 为了适应 YOLOv8 训练需求,需将自定义的数据集转换成 COCO 或其他支持格式。假设已准备好标注后的图像及其对应的标签文件夹结构如下所示: ``` dataset/ ├── images/ │ ├── train/ │ └── val/ └── labels/ ├── train/ └── val/ ``` 接着编写 YAML 文件描述路径信息以便于后续脚本读取: ```yaml train: ../dataset/images/train val: ../dataset/images/val nc: 80 names: ['person', 'bicycle', ... ] # 类别列表 ``` 完成以上设置之后上传至 AutoDL 存储空间中。 #### 4. 开始训练过程 利用 CLI 工具启动训练流程非常简便,只需指定参数即可执行完整的端到端工作流: ```bash yolo task=detect mode=train model=yolov8n.yaml data=custom_data.yaml epochs=100 imgsz=640 ``` 其中各选项含义分别为: - **task**: 设定目标任务类型为物体识别; - **mode**: 表明当前处于训练模式下; - **model**: 使用的小规模基础架构作为起点; - **data**: 自己准备好的数据源位置链接; - **epochs**: 整体迭代次数设定为目标值; - **imgsz**: 输入图片尺寸调整标准设为固定数值像素宽高一致。 当一切就绪后提交作业给 GPU 节点处理直至结束为止。 --- #### 注意事项 - 确认所选用实例规格满足最低硬件条件要求,尤其是显存容量方面。 - 如果遇到内存不足错误提示考虑降低批量大小或者裁剪分辨率来缓解压力情况发生概率减少资源消耗程度提升效率表现效果更佳。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值