1/cos(x)、1/sin(x)的不定积分推导

博客主要提及了1/cos(x)和1/sin(x)的不定积分相关内容,但未给出具体求解过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1/cos(x) 的不定积分:

\begin{align*} \int \frac{1}{\cos{x}}dx &=\int \frac{1}{\cos ^{2}\frac{x}{2}-\sin ^{2}\frac{x}{2}}dx\\ &=\int \frac{2}{\cos ^{2}\frac{x}{2}(1-\tan ^{2}\frac{x}{2})}d\frac{x}{2}\\ &=\int \frac{2}{1-\tan ^{2}\frac{x}{2}}d\tan \frac{x}{2}\\ &=\int \frac{2}{(1-\tan \frac{x}{2})(1+\tan \frac{x}{2})}d\tan \frac{x}{2}\\ &=\int \frac{1}{1+\tan\frac{x}{2}} + \frac{1}{1-\tan\frac{x}{2}} d\tan \frac{x}{2}\\ &=\int \frac{1}{1+\tan\frac{x}{2}} d\tan \frac{x}{2} + \int \frac{1}{1-\tan\frac{x}{2}} d\tan \frac{x}{2}\\ &=\int \frac{1}{1+\tan\frac{x}{2}} d(1+\tan \frac{x}{2}) - \int \frac{1}{1-\tan\frac{x}{2}} d(1-\tan \frac{x}{2})\\ &=\ln |1 + \tan \frac{x}{2}| - \ln |1 - \tan \frac{x}{2}| + C\\ &=\ln \left | \frac{1+\tan \frac{x}{2}}{1-\tan \frac{x}{2}} \right | + C\\ &=\ln \left | \frac{\cos \frac{x}{2}+\sin \frac{x}{2}}{\cos \frac{x}{2}-\sin \frac{x}{2}} \right | + C\\ &=\ln \left | \frac{1+\sin x }{\cos x} \right | + C\\ &=\ln \left | \sec x + \tan x \right | + C\\ \end{align*}

 

1/sin(x) 的不定积分:

\begin{align*} \int \frac{1}{\sin{x}}dx &=\int \frac{1}{2\cos\frac{x}{2} \sin\frac{x}{2}}dx\\ &=\int \frac{1}{\cos ^{2}\frac{x}{2} (\tan \frac{x}{2}) }d\frac{x}{2}\\ &=\int \frac{1}{\tan \frac{x}{2}}d\tan \frac{x}{2}\\ &=\ln | \tan \frac{x}{2} | + C\\ &=\ln \left | \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} \right | + C\\ &=\ln \left | \frac{\sin \frac{x}{2}\sin \frac{x}{2}}{\cos \frac{x}{2}\sin \frac{x}{2}} \right | + C\\ &=\ln \left | \frac{\frac{1}{2}(1-\cos x) }{\frac{1}{2}\sin x} \right | + C\\ &=\ln \left | \frac{1}{\sin x} - \frac{\cos x}{\sin x} \right | + C\\ &=\ln \left | \csc x - \cot x \right | + C\\ \end{align*}

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值