一阶低通滤波及其离散化

一阶低通滤波

低通滤波(Low-pass filter) 是一种过滤方式,规则为低频信号能正常通过,而超过设定临界值的高频信号则被阻隔、减弱,一阶低通滤波的传递函数如下所示。
G ( s ) = ω c / ( s + ω c ) G(s)=ω_c/(s+ω_c ) G(s)=ωc/(s+ωc)
ω c ω_c ωc为滤波截止角频率,实际应用中经常令 T = 1 / ω c T=1/ω_c T=1/ωc,一阶低通滤波器传递函数可改写为:
G ( s ) = 1 / ( T s + 1 ) G(s)=1/(Ts+1) G(s)=1/(Ts+1)
其中T是滤波时间常数,s为拉普拉斯的算子,一阶低通滤波器的伯德图如下所示。
在这里插入图片描述
横坐标为,输出与输入之比再取对数。对低通滤波器进行离散化,使用后向差分变换,变换公式为:
s = ( 1 − z − 1 ) / T s s=(1-z^-1 )/T_s s=(1z1)/Ts
将变化公式带入传递函数,可得差分方程:
y ( n ) = ( ω c T s ) / ( 1 + ω c T s ) x ( n ) + 1 / ( 1 + ω c T s ) y ( n − 1 ) y(n)=(ω_c T_s)/(1+ω_c T_s ) x(n)+1/(1+ω_c T_s ) y(n-1) y(n)=(ωcTs)/(1+ωcTs)x(n)+1/(1+ωcTs)y(n1)
a = ( ω c T s ) / ( 1 + ω c T s ) a=(ω_c T_s)/(1+ω_c T_s ) a=(ωcTs)/(1+ωcTs),则 1 / ( 1 + ω c T s ) = 1 − a 1/(1+ω_c T_s )=1-a 1/(1+ωcTs)=1a,整理后得到低通滤波器的差分方程为:
y ( n ) = a x ( n ) + ( 1 − a ) y ( n − 1 ) y(n)=ax(n)+(1-a)y(n-1) y(n)=ax(n)+(1a)y(n1)
其中:y(n)为本次滤波值,y(n-1)上次滤波值为, x(n)为本次采样值。

仿真模型

simulink仿真模型
在这里插入图片描述

测试信号合成
测试信号合成
低通滤波截止频率2Hz
低通滤波截止频率2Hz
低通滤波截止频率1Hz
在这里插入图片描述

### 如何在Simulink中实现低通滤波器的设计与仿真 #### 1. Simulink模型搭建 为了构建低通滤波器,在Simulink环境中需利用离散时间域内的差分方程来描述该系统的动态特性。对于低通滤波器而言,其核心在于设置合适的滤波系数α,这直接影响着输出响应的速度和平滑度[^4]。 ```matlab % MATLAB命令窗口初始化参数 alpha = 0.5; % 设置滤波系数α值 Ts = 0.01; % 定义采样周期T_s (秒) ``` #### 2. 差分方程表达式 根据给定条件,可以写出如下形式的低通滤波器差分方程式: \[ Y(n)=\alpha X(n)+(1-\alpha)Y(n-1)\] 这里\( \alpha \)为滤波因子,取值范围通常介于0至1之间;\( X(n) \)代表当前时刻的输入信号样本;而 \( Y(n-1) \) 则指代前刻经过处理后的输出数据点。 #### 3. 构建Simulink框图 打开MATLAB并启动Simulink库浏览器后,按照下述步骤操作即可完成简单的低通滤波器模型创建: - 添加`Discrete-Time Integrator`模块用于存储历史状态; - 插入`Gain`增益模块调整权重比例; - 使用`Sum`求和节点组合新旧两个成分得到最终输出; - 连接必要的源端口(如Sine Wave正弦波发生器作为测试激励)、观察终端(Scope示波器查看效果)以及其他辅助组件形成闭环回路[^1]。 ![image](https://example.com/image.png) > **注意**: 上图为示意说明用途,并非实际截图链接,请读者自行参照官方文档指导建立具体项目文件。 #### 4. 参数配置与运行调试 确保所有元件连接无误之后,还需仔细校准各个部件的关键属性,特别是针对`Discrete-Time Integrator`内部初始条件的选择以及外部接口的数据类型匹配等方面做出合理安排。最后保存工程再点击播放按钮执行模拟运算流程,借助内置工具分析图表展示的结果变化趋势以便进步优化性能表现[^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值