计算一个数据集的mean和std

先将这个数据集的所有图片的路径写到一个文件中

import os
import re

dirs = os.listdir(r"F:\美食分类比赛\food_test\images")

# dress="F:/tensorflow4/src/train_data/"
with open(r"F:\美食分类比赛\train.txt","w") as f:
	for file_ in dirs:
	    for root,dirs,files in os.walk(os.path.join(dirs, file_)):
	        # root = root.replace(dress,'')
	        for file in files:
	            if re.search('.jpg', file):
	                f.write(os.path.join(root, file) + "\n")

然后再去这个文件读取图片的路径,并计算数据集的mean和std

**# -*- coding: utf-8 -*-**
import numpy as np
import cv2
import random
import os

**# calculate means and std  注意换行\n符号**
**# train.txt中每一行是图像的位置信息**
path = 'train.txt'
means = [0, 0, 0]
stdevs = [0, 0, 0]

index = 1
num_imgs = 0
with open(path, 'r') as f:
    lines = f.readlines()
    # random.shuffle(lines)
    print(lines)
    for line in lines:
        print(line)
        print('{}/{}'.format(index, len(lines)))
        index += 1
        a = os.path.join(line)
        # pr
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值