Coordinate Transform | dq / Clark / Park

注:本文为 “ dq / Clark / Park” 相关文章合辑

略作重排。
图片清晰度限于引文原状。
如有内容异常,请看原文。


DQ 坐标轴锁相环(PLL)

a1063557004 于 2022-03-20 14:27:15 发布

锁相环的主要目的是实现并网控制。在并网逆变器中,注入电网的电流为正弦信号,通常以电流过零时刻作为并网时刻。然而,由于并网时刻的随机性,电网电压可能并非处于过零时刻。若直接并网,注入电流与电网电压将存在相位差,导致功率因数不为 1,电流利用率降低,无法完全转化为有功功率。因此,需采用锁相环技术,获取与电网电压相同的角度信号,再通过此角度注入电流,使电流与电网电压同相位,从而提高功率因数,使其接近 1,提升电流利用率。

此外,PFC 整流亦需使输入电流与输入电压相位一致,以提高功率因数。

当 dq 旋转坐标系以给定三相电压的角速度同步旋转时,若给定信号为 cos 信号,且坐标系模式为 d 轴初始位置与 a 轴重合,则 d 轴分量为 1,q 轴分量为零,合成电压矢量与 d 轴重合,实现同步旋转。

\begin{bmatrix}
u_{a} \
u_{b} \
u_{c}
\end{bmatrix}=
\begin{bmatrix}
\begin{aligned}
&\cos\omega t \
&\cos(\omega t - \frac{2\pi}{3}) \
&\cos(\omega t+\frac{2\pi}{3})
\end{aligned}
\end{bmatrix}

然而,若 dq 的旋转角度与给定电压的角度不同步(相当于并网时存在相位差),例如给定电压的角度为 ω t − π / 6 \omega t - \pi / 6 ωtπ/6 ,而 dq 的旋转角度仍为 ω t \omega t ωt ,即在起始时刻 dq 的旋转角度与给定电压的角度相差 π / 6 \pi / 6 π/6 的相位差,则随着时间推移,二者始终存在该角度差,如下所示:

img

此时,q 轴和 q 轴上均有直流分量,且 dq 轴的旋转角度不再与给定电压的角度一致,而是相差 π / 6 \pi / 6 π/6 ,且超前 π / 6 \pi / 6 π/6 ,因为三相电压的合成矢量 V 滞后于 d 轴 π / 6 \pi / 6 π/6 。因此,若能通过控制使 d 轴的旋转速度减慢(V 矢量的旋转速度不能改变,因为它是由给定三相电压的角速度决定的,相当于电网电压的角速度),则 V 和 d 轴的相对速度将从原来的不变变为加快。随着时间推移,V 必然会与 d 轴重合,q 轴分量为 0。稳定后,若 V 和 d 同步运行,则此时 d 轴的旋转角度即为 V 矢量的旋转角度,即给定电压 a 相的角度。同理,若初始位置时 V 超前于 d 一定的角度,例如 π / 6 \pi / 6 π/6 ,则通过一定的控制使 dq 轴的旋转速度加快,经过一定时间后,dq 轴将追上 V,然后保持同步运行。

基于以上分析,引出基于 d 轴定向的锁相环,其控制框图如下所示:

img

三相对称给定电压信号,经过 Clarke 变换和 Park 变换后,得到 dq 轴分量。若初始时给定电压有相位信号,例如 − π / 6 -\pi / 6 π/6 ,而 dq 是从 0 度开始以 ω t \omega t ωt 的角度旋转的,则通过上述分析可知,dq 轴均有初始分量,且 q 轴分量为负,d 轴分量为正。通过上述框图控制,Vq 与 0 比较后信号输出为正值,经过 PI 控制后输出为正,再在 ω 0 \omega_0 ω0 的基础上(前馈减去这个正值 ω 0 \omega_0 ω0 是给定的基准角频率,即电网角频率 2 π × 50 2\pi \times 50 2π×50 ),得到的新角频率将小于 ω 0 \omega_0 ω0 。然后经过积分后得到 ω t \omega t ωt ω t m o d    2 π \omega t \mod 2\pi ωtmod2π 是将角度转换到周期 0 到 2 π 2\pi 2π 内。这里得到的角度即为锁相之后的输出角度,该角度也是 dq 轴的旋转角度,因为它会反馈给 dq 轴旋转。得到 ω \omega ω 后除以 2 π 2\pi 2π 即为锁相之后的输出频率。由于调节后 ω \omega ω 小于 ω 0 \omega_0 ω0 ,因此 dq 轴的旋转速度将减慢,但电压矢量的旋转速度保持不变,仍为 ω \omega ω 。经过一段时间后,V 将追上 d 轴并与之重合,可能会经过一些振荡后稳定在 d 轴上,与 d 同步旋转。此时的旋转角度,即输出角度,即为电网电压的角度,达到锁相的目的。

以下以起始角度相差 π / 6 \pi / 6 π/6 ,即电网 a 相的角度为 ω t − π / 6 \omega t - \pi / 6 ωtπ/6 为例,对两种给定电压信号:cos、sin,以及两种旋转坐标系模式:d 轴初始位置与 a 轴重合、d 轴初始位置滞后 a 轴 90°,共 4 种情况进行锁相结果的分析和说明。

给定两种信号如下:img

[ u a u b u c ] = [ cos ⁡ ( ω t − π 6 ) cos ⁡ ( ω t − 2 π 3 − π 6 ) cos ⁡ ( ω t + 2 π 3 − π 6 ) ] [ u a u b u c ] = [ sin ⁡ ( ω t − π 6 ) sin ⁡ ( ω t − 2 π 3 − π 6 ) sin ⁡ ( ω t + 2 π 3 − π 6 ) ] \begin{align*} \begin{bmatrix} u_{a} \\ u_{b} \\ u_{c} \end{bmatrix} &= \begin{bmatrix} \begin{aligned} & \cos\left(\omega t - \frac{\pi}{6}\right) \\ & \cos\left(\omega t - \frac{2\pi}{3} - \frac{\pi}{6}\right) \\ & \cos\left(\omega t + \frac{2\pi}{3} - \frac{\pi}{6}\right) \end{aligned} \end{bmatrix} \\ \begin{bmatrix} u_{a} \\ u_{b} \\ u_{c} \end{bmatrix} &= \begin{bmatrix} \begin{aligned} & \sin\left(\omega t - \frac{\pi}{6}\right) \\ & \sin\left(\omega t - \frac{2\pi}{3} - \frac{\pi}{6}\right) \\ & \sin\left(\omega t + \frac{2\pi}{3} - \frac{\pi}{6}\right) \end{aligned} \end{bmatrix} \end{align*} uaubuc uaubuc = cos(ωt6π)cos(ωt32π6π)cos(ωt+32π6π) = sin(ωt6π)sin(ωt32π6π)sin(ωt+32π6π)

故意设置初始角度差,以模拟并网时刻存在角度差,也可以是其他角度,从而产生明显的锁相效果。

模式一

输入为 cos 信号,d 初始时刻与 a 轴重合,正常情况下 d = 1 , q = 0 d = 1,q = 0 d=1q=0;但存在角度差后,初始时刻位置如下:

img

上图中,V 代表要锁定的合成矢量。根据上述分析,未滞后 30° 时,初始矢量的 d 轴分量为 1,q 轴分量为 0,因此 V 应与 d 轴重合。但并网时角度初始值滞后 30°,因此初始时刻 V 在 d 轴后 30°。若不进行锁相,会将该初始位置误认为电网的过零点时刻,从而始终与实际电网存在该角度差。需要通过锁相控制抵消初始的 30° 相位差,使 V 与 d 轴重合,从而使旋转坐标系的旋转角度与电网的相角一致,即输出角度与给定电压角度一致。由模型图和向量图可知,初始时 q 为 − sin ⁡ 3 0 ∘ = − 0.5 -\sin 30^\circ = -0.5 sin30=0.5 。通过 PI 控制后,输出角频率将小于 314 rad/s,因此旋转坐标系旋转速度减慢,但合成矢量的旋转速度始终保持 314 rad/s,从而使矢量逐渐追上旋转坐标系,直至与 d 轴重合。若控制不当,合成矢量可能超过 d 轴,此时 q 轴分量为正,经比例积分调节后输出频率增加,dq 旋转加快,再次追上 d 轴。经过振荡后,最终稳定在 d 轴上,锁相成功。假设稳定时的位置如下:

img

此时,V 旋转的角度与 d 轴旋转的角度的差值即为锁相作用的角度。可以看到,d 轴分量正好比 V 矢量慢了 30° 角,相当于在原来 ω t \omega t ωt 旋转角度的基础上滞后了 30°,然后二者同步运行。d 轴锁到的角度后的输出即为 a 轴正弦量对应的角度 ω t − π / 6 \omega t - \pi / 6 ωtπ/6,通常锁相的目的就是锁定 a 相的角度。

img

上图中,蓝色表示 dq 坐标轴旋转的角度(累加得到),红色表示实际电网。

模式二

输入为 sin 信号,d 初始时刻与 a 轴重合,正常情况下 d = 0 , q = − 1 d = 0,q = -1 d=0q=1

此时,正常情况下 d 轴为 0。若按照 d 轴定向进行锁相,强制使 d = 1 , q = 0 d = 1,q = 0 d=1q=0,则即使锁相成功,相角也不会与正常情况一致,从而出现问题。但由于习惯上采用 d 轴定向,因此仍使用 d 轴定向,只是最后的锁相角度需要进一步处理,以下进行分析。

img

根据上述分析,未滞后 30° 时,初始矢量的 d 轴分量为 0,q 轴分量为 -1,因此应与 q 轴负半轴重合。但由于设置时滞后 30°,因此应位于 q 轴负半轴后 30°。然而,dq 坐标轴的位置保持不变,d 轴初始时刻与 α 轴以及 a 轴重合,初始角度仍表示 ω t \omega t ωt 。然后进行锁相控制。由模型图和向量图可知,初始时 q 轴分量为 − cos ⁡ 3 0 ∘ = − 0.866 -\cos 30^\circ = -0.866 cos30=0.866 。进入积分环节后,输出角频率将小于 314 rad/s,因此旋转坐标系旋转速度减慢,等待转速为 314 rad/s 的矢量追上来。矢量 V 中间必然会经过 q 轴的负半轴,因此 q 轴分量会先从 -0.866 变为 -1,再变为 0,直至与 d 轴重合。若控制不当,与上述情况类似,会出现振荡,最终稳定在 d 轴上。

锁相成功稳定后,假设稳定时的位置如下图:

img

从图中可以看到,V 矢量转过的角度减去 d 轴转过的角度即为锁相作用的角度。可以看到,V 矢量相对 d 轴,比 d 轴快 90° + 30° 的角度,也就是说 d 轴在 ω t \omega t ωt 的基础上慢了 120°。本来应该慢 30°,因此现在锁相输出为 ω t − π / 2 − π / 6 \omega t - \pi / 2 - \pi / 6 ωtπ/2π/6 。虽然 d 轴与 V 矢量同步,但锁相结果滞后 a 相 90°。因此,为了达到原来的要求,需要在原输出上加上 90°,以抵消该滞后。仿真结果也验证了这一点。

img

第二张图中,d 轴分量最终为 1,与旋转矢量重合,q 轴分量为 0,且 q 轴分量从 -0.866 变为 -1,再变为 0,与原理分析一致。右边锁相过零点时正弦量为 1,正确的结果应为 sin ⁡ 0 = 0 \sin 0 = 0 sin0=0(个人感觉第三张图红色部分存在问题,图中显示为超前而非滞后),因此滞后了 90°。加上 90° 后的输出结果如下:

img

稳定后过零点时正弦量大小为 0,正好对应 sin ⁡ 0 = 0 \sin 0 = 0 sin0=0 ,与 a 相电压同步,锁相成功。由此对比也可看出,a 轴与 d 轴重合的坐标系是 cos 型坐标系,即使给定的是 sin 型电压,经过锁相后也会输出 cos 型相位。

除此之外,如果此时输出角度不加 90°,但通过 cos 输出,相当于 cos ⁡ ( ω t − 9 0 ∘ − 3 0 ∘ ) = sin ⁡ ( ω t − 3 0 ∘ ) \cos(\omega t - 90^\circ - 30^\circ) = \sin(\omega t - 30^\circ) cos(ωt9030)=sin(ωt30),输出信号仍然是正确的。通过此可以得出,不论给定信号为何种类型,如果采用 d 轴初始位置与 a 轴重合的模式进行变换,然后锁相,得到锁相角度后均通过 cos 输出,那么输出信号就是正确的。这也再次借助理解,此旋转坐标系模式为 cos 型的。

其他两种模式与此类似,这两种模式的参考输出角度是按 q 轴的旋转角度计算的。

模式三

输入为 sin 信号,d 初始时刻滞后 a 轴 90°,正常情况下 d = 1 , q = 0 d = 1,q = 0 d=1q=0

初始位置如下:

img

稳定后如下:

img

稳定后 q 轴转过的角度即为坐标系的旋转角度,也是输出角度。可以看到,V 转过的角度除了 q 轴转过的以外,还多转了 π / 6 \pi / 6 π/6 ,弥补了初始时刻滞后的 π / 6 \pi / 6 π/6 。通过 sin 输出后,锁相成功。

img

模式四

输入为cos 信号d 初始时刻滞后 a 轴 90°,正常情况下d = 0,q = 1

初始位置,V 滞后 q 轴 π / 6 \pi / 6 π/6

img

稳定后,V 按 d 轴定向,因此此时旋转角度要比 V 矢量快 90°,要么减 90°,然后通过 cos 输出,要么直接通过 sin 输出:

img

仿真如下:

img

可以看到,锁相后的角度过 0 点,对应的正弦信号值并不是 cos ⁡ 0 \cos 0 cos0 ,而是 0,相当于超前了 90°(红色的正弦波个人感觉其实是错的,图里显示为滞后了 90°)。在此基础上减去 90° 后的输出如下:

img

通过输出结果可以看到锁相成功。如果只要输出正弦信号的话,通过 sin 输出也可以,相当于 sin ⁡ ( ω t + π / 2 − π / 6 ) = cos ⁡ ( ω t − π / 6 ) \sin(\omega t + \pi / 2 - \pi / 6) = \cos(\omega t - \pi / 6) sin(ωt+π/2π/6)=cos(ωtπ/6) ,与给定 a 轴信号相同。

总结:

从上述结果可以看出,之前分析的给定 sin、cos 信号的不同,d、q 值也不同,但采用统一的锁相环后,电压矢量会统一按照 d 轴定向。因此,d 轴始终是主轴,归一化后其上的分量始终为 1,q 轴上的分量始终为零。有时即使采用不同的坐标系模式,只要把 d 轴作为主轴控制,最终结果也是正确的,这正是因为使用了锁相环。但角度仍需注意,可能会相差 90° 角。解决相差 90° 的方法有两种:一是在输出的角度上减去或加上 90°,以抵消该角度差;二是,如果采用 d 轴与 a 轴重合的模式,可以均采用 cos 输出;如果采用 d 轴滞后于 a 轴 90° 的形式,可均采用 sin 输出,这样也是正确的。

因此,为了方便,建议如果给定信号是 cos(电网电压是 cos 型的),就采用 a 与 d 同向的坐标系模式;如果给定信号是 sin,就采用 d 初始时刻滞后于 a 轴 90° 的模式。这两种情况下,d 轴本来就是主轴。


单片机学习:dq 坐标系

我家大宝最可爱已于 2022-04-22 13:48:38 修改

直流电机磁场

以下是直流电机(可参考电动小马达内部结构)的磁场分布:

直流电机磁场

直流电机的磁场包括励磁磁场和电枢磁场。上下两块磁体产生励磁磁场,方向从 N 指向 S。电枢磁场与励磁磁场垂直,图中已标明方向(可使用右手定则判断磁场方向:x 表示电流流入方向,o 表示电流流出方向,最终可判断磁场方向从左向右)。如果电枢的轴线不与励磁磁场垂直,则励磁磁场和电枢磁场会存在夹角,通常电枢磁场总是与电刷的轴线重合。

将主极(电磁磁场 d)的轴线称为直轴,与直轴垂直的轴线(电枢磁场 q)称为交轴。

上述内容仅为类比,实际上 dq 坐标系并无物理意义,而是人们假想的坐标系。

感应电机磁场

感应电机磁场

上图是三相感应电机的原理示意图。定子上有绑线圈,可接入相位相差 120° 的同等正弦交流电。每个交流电都会在线圈上产生磁场,三个磁场叠加后如下图所示:

磁场叠加

最终形成如图所示的旋转磁场。转子是闭合线圈,定子产生的旋转磁场切割转子的闭合线圈,会产生感应电流。感应电流在磁场中产生安培力,安培力驱动转子转动,最终效果如下:

转子转动

三相感应电机的数学方程式非常复杂,且电机的很多控制参数在方程式中耦合在一起,难以单独控制。有人发现 dq 坐标系可以解决这个问题,其原理可用下图表示(通常将 dq 坐标系放在转子的旋转磁场上):

dq 坐标系

具体如下图:

dq 坐标系详细

上图初看较复杂,可分解来看。abc 产生一个旋转磁场 V(矢量),该矢量大小不变,旋转的角速度也不变。若将该矢量投影到 α 和 β 上,则有:

V α = V × cos ⁡ α V_\alpha = V \times \cos \alpha Vα=V×cosα

V β = V × sin ⁡ α V_\beta = V \times \sin \alpha Vβ=V×sinα

这便是克拉克变换,即从三相静止坐标系到两相静止坐标系的变换(3s/2s)。

具体变换如下图:

克拉克变换

若静止坐标系 αβ 以某个角速度旋转,例如该角速度与定子产生的旋转磁场的角速度相同,则旋转磁场与 αβ 坐标系相对静止。此时,旋转的 αβ 坐标系即称为 dq 坐标系(这才是真正的 dq 坐标系)。dq 坐标系与 αβ 坐标系之间的关系如下图:

dq 坐标系与 αβ 坐标系关系

与之对应的是帕克变换,即从两相静止坐标系到两相旋转坐标系的变换(2s/2r)。

帕克变换通常表示为从三相静止坐标系到两相旋转坐标系的变换(3s/2r),如下图:

帕克变换

帕克变换详细

帕克变换详细

转子磁动势

设转子转速为 n,转差率为 s,定子产生的旋转磁场的同步转速为 n s n_s ns ,则气隙磁场 B 将以

Δ n = n s − n = s n s \Delta n = n_s - n = s n_s Δn=nsn=sns

的相对速度切割转子绕组。 Δ n \Delta n Δn 称为转差。此时,转子绕组的感应电动势 E 和转子产生的电流 I 的频率 f 2 f_2 f2 应为

f 2 = p Δ n 60 = p n s 60 s = s f 1 f_2 = \frac{p \Delta n}{60} = \frac{p n_s}{60} s = s f_1 f2=60pΔn=60pnss=sf1

其中, f 2 f_2 f2 称为转差频率。频率为 f 2 f_2 f2 的转子电流将产生转子旋转磁动势 F。F 相对于转子的转速

n 2 = 60 f 2 p = 60 s f 1 p = s n s = Δ n n_2 = \frac{60 f_2}{p} = \frac{60 s f_1}{p} = s n_s = \Delta n n2=p60f2=p60sf1=sns=Δn

由于转子本身以转速 n 旋转,因此从定子侧观察时,F 在空间的转速应为

n 2 + n = Δ n + n = n s n_2 + n = \Delta n + n = n_s n2+n=Δn+n=ns

这表明无论转子的实际转速是多少,转子磁动势 F 在空间的转速总是等于定子磁动势的转速,并且与定子磁动势保持相对静止。


关于电机 dq 轴的理解

小白学电机

发布于 2023-07-05 22:14・IP 属地广东 ,编辑于 2024-01-06 11:15・IP 属地广东

一、d、q 轴定义

Q 轴亦称交轴。因交轴的英文全称是 “quadrature axis”,故 “Q 轴” 中的 “Q” 取自 “quadrature axis” 的首字母。交轴之名源于其与 NS 极磁铁垂直,二者呈相交关系,故称交轴。交轴的作用在于控制力的大小

D 轴亦称直轴。因直轴的英文全称是 “direct-axis”,故 “D 轴” 中的 “D” 取自 “direct-axis” 的首字母。直轴之名源于其与 NS 极磁铁同方向,二者呈平行关系,故称直轴。直轴的作用在于控制磁场的大小

说明,d、q 轴之间的电角度是 90°,而不是机械角度。这就是为什么对于多对极的电机而言,d、q 轴看上去并不垂直。其实将机械角度按照公式 θ 电 = p × θ 机 \theta_{\text{电}} = p \times \theta_{\text{机}} θ=p×θ(其中 p p p 为极对数)转换为电角度后就垂直了。

img
dq 矢量控制坐标轴

二、为什么要研究 d、q 轴电感?

这里仅从磁阻电机角度去说明为什么要研究 d、q 轴电感。首先得了解磁阻电机的工作原理(如图 2 所示),用一句话描述就是:磁力线总是沿着磁阻最小的路径走。由于空气的磁阻远大于转子铁芯,所以转子 q 轴就倾向于和图中 s 轴重合(重合时空气气隙最短,磁阻最小)。

img

图 2 磁阻转矩的生成

由此可知,磁阻电机的转矩和 d、q 轴有关。下面用一个示意图来解释 d、q 轴是如何影响磁阻转矩的(如图 3 所示)。 i s i_s is 是定子电流, i q i_q iq i d i_d id 分别是 i s i_s is 在 q 轴和 d 轴的分量。乘上各自的电感可合成磁链 ψ 0 \psi_0 ψ0 。感应电动势 e e e 的相位超前 ψ 0 \psi_0 ψ0 90°,且 ψ 0 \psi_0 ψ0 i s i_s is 不重合。当两者的角度越大, e e e i s i_s is 的相位差就越小,电机功率因数越大。如何增大 ψ 0 \psi_0 ψ0 i s i_s is 的角度,就需要调整 d 轴和 q 轴电感。这里就引出了一个凸极比的概念,即 L q / L d L_q / L_d Lq/Ld 。凸极比越大(结合图理解),电机功率因数越大。

img

图 3 d、q 轴合成磁链

拓展一下,对于磁阻电机而言,如何对凸极比进行调整, ψ 0 \psi_0 ψ0 i s i_s is 的夹角都是比较小的,电机功率因数也不会太大。为了进一步提高功率因数,可以在转子上增加永磁体,就成了永磁辅助同步磁阻电机,其空间矢量示意图如图 4 所示。 ψ PM \psi_{\text{PM}} ψPM 为永磁体磁链, ψ 0 \psi_0 ψ0 i s i_s is 产生的磁链, ψ s \psi_s ψs ψ 0 \psi_0 ψ0 ψ PM \psi_{\text{PM}} ψPM 的合成磁链。从图中可以看出 i s i_s is ψ s \psi_s ψs 的夹角接近 90°,此时功率因数就特别高,接近 1。由此可知,d、q 轴电感和永磁体磁链是电机最重要的三个参数

img

图 4 永磁辅助同步磁阻电机空间矢量图

三、d、q 轴电感和什么有关?

最直观的解释就是公式,所以先摆上电感的计算公式:

L = N 2 R m = μ A N 2 l L = \frac{N^2}{R_m} = \frac{\mu A N^2}{l} L=RmN2=lμAN2

其中, R m R_m Rm 为磁阻, μ \mu μ 为磁导率, A A A 为磁通穿过面积, N N N 为定子线圈匝数, l l l 为磁路长度。

对于结构确定的电机,对电感产生影响的就只剩磁导率 μ \mu μ 了。为了解磁导率,这里就需要引出铁芯的磁化曲线(如图 5 所示)。从图中可知,磁导率并不是定值。开始时, B B B H H H 成线性关系,磁导率不变。当 H H H 继续变大时( H H H 的增大是由线圈电流控制的), μ \mu μ 逐渐减小。所以对应的电感也是先增大,后减小。那么什么时候是最佳点,这里就需要引出几个概念。第一个是饱和电流,即当电感值下降 30% 时的电流值;第二个是磁路饱和,即 B B B (常听的磁密就是 B B B )达到最大值。所以要使电感保持在较高的值,电流最好不要超过饱和电流。当磁路饱和后,再通过增大电流提高 H H H ,从而达到增大 B B B 的目的也是不可取的,因为 B B B 微小的提高需要提供非常大的电流,这会增大电机损耗。这也可以解释电机设计中,为何尽量避免局部磁密饱和。最后还需补充说明,日常判断电感大小,还可以根据公式中的磁阻来判断。

img

图 5 铁芯磁化曲线

四、d、q 轴电感的差异?

img

图 (a) 是内嵌式永磁同步电机,即凸极永磁同步电机;图 (b) 是表贴式永磁同步电机,即隐极永磁同步电机。电机的 d 轴和 q 轴是一个很重要的概念,他们是相对于转子而言的。对于电机来说,d 轴即转子磁钢磁极所在轴线,方向是从 S 极指向 N 极。q 轴与 d 轴垂直,方向逆时针沿 d 轴转过 90°。说是凸极隐极,其实是根据 d 轴和 q 轴的同步电感来确定的。发现了吗?内嵌式永磁同步电机里头 d 轴方向的用铁量比较少,因为除了空气气隙,还有永磁体占用了一定空间。永磁体磁导率相当于空气!而 q 轴除了空气气隙就是铁了,用铁量比 d 轴要多,所以 d 轴电感小,q 轴电感大。而隐极的磁铁是在气隙里头的,d 轴方向和 q 轴方向用铁量一样多,所以 d 轴和 q 轴的电感相等。

另外说句题外话,我们知道内嵌式电机的弱磁性能比表贴式强,有些文章从电感的角度进行分析,但往往分析得让人云里雾里,理解不透。在我看来,不应该从电感角度进行分析,应该从永磁体产生的磁链角度进行分析。内嵌式和表贴式在相同永磁体用量的前提下,由于内嵌式永磁体漏磁效应更加明显(从永磁体两侧面通过铁芯漏磁),所以实际通过定转子气隙的磁感线减少,切割绕组的磁力线减少,产生的反电势也就更小一些。由此可知,在相同用量永磁体的前提下,表贴式能产生的反电势会比内嵌式大,在进行弱磁时也会更困难一些,会用更大的电流进行弱磁。

此部分内容参考了两篇知乎文章和一本书籍《永磁辅助同步磁阻电机设计与应用》。


电机控制学习笔记——坐标变换

屠龙归来仍是少年 于 2021-11-12 00:10:08 发布

0 前言

直流电机是低阶、线性、非耦合系统,具有控制简单、调速平滑等优点。而交流电机是高阶、非线性、强耦合系统,在静态性能和动态性能调速方面不如直流电机。那么,能否模仿直流电机的控制方式来控制交流电机呢?要实现这一点,首先要了解直流电机的控制原理。

直流电机的控制公式如下所示:
T e = C T ϕ m I a ϕ m = L f I f (1) \begin{aligned} T_e &= C_T \phi_m I_a \\ \phi_m &= L_f I_f \end{aligned} \tag{1} Teϕm=CTϕmIa=LfIf(1)
可以看到,直流电机的电磁转矩 T e T_e Te 与主磁通 ϕ m \phi_m ϕm 和电枢电流 I a I_a Ia 相关,而主磁通 ϕ m \phi_m ϕm 与励磁电流 I f I_f If 线性相关。当主磁通 ϕ m \phi_m ϕm 保持不变时,电磁转矩 T e T_e Te 仅和电枢电流 I a I_a Ia 线性相关。因此,直流电机可以用励磁电流 I f I_f If 控制主磁通 ϕ m \phi_m ϕm,用电枢电流 I a I_a Ia 控制电磁转矩 T e T_e Te

因此,模仿直流电机的控制方式来控制交流电机的关键在于:将三相定子电流分解为两个分量,一个分量为励磁分量,用于控制主磁通,类似于直流电机的 I f I_f If;另一个分量为转矩分量,用于控制电磁转矩,类似于直流电机的 I a I_a Ia。基于此发明了矢量控制。而要实现这一点,就需要进行坐标变换,将电流从 abc 三相静止坐标系变换到 dq 两相旋转坐标系。下面介绍相关坐标系之间的关系并给出变换过程。

1 坐标系

在电机控制中常用的三种坐标系如下图所示:分别为 abc 三相静止坐标系、 α β \alpha \beta αβ 两相静止坐标系、dq 两相旋转坐标系。
abc三相静止坐标系

其中,abc 三相静止坐标系为三相互差 120° 的静止坐标系; α β \alpha \beta αβ 两相静止坐标系为 α \alpha α 轴超前 β \beta β 轴 90°,并且 α \alpha α 轴与 a 轴重合的两相静止坐标系;dq 两相旋转坐标系为两相的旋转坐标系,转速为同步速,其中 q 轴超前 d 轴 90°,d 轴与转子磁链重合。

因此,有三种坐标变换形式:从 abc 三相静止坐标系变换到 α β \alpha \beta αβ 两相静止坐标系(abc/ α β \alpha \beta αβ 变换或 3s/2s 变换)、从 α β \alpha \beta αβ 两相静止坐标系变换到 dq 两相旋转坐标系的变换( α β \alpha \beta αβ/dq 变换或 2s/2r 变换)、从 abc 三相静止坐标系变换到 dq 两相旋转坐标系的变换(abc/dq 变换或 3s/2r 变换)。

从最原始的定义来说,abc/ α β \alpha \beta αβ 变换叫 Clarke 变换,abc/dq 变换叫 Park 变换。然而,目前很多书籍和论文都把 α β \alpha \beta αβ/dq 变换叫做 Park 变换。东南大学的付兴贺 [ 1 ] ^{[1]} [1]老师指出,这是不严谨的,只能称之为“狭义”的 Park 变换。但为了理解和交流方便,下文仍然使用 Park 变换来指代 α β \alpha \beta αβ/dq 变换。

2 Clarke 变换(abc/ α β \alpha \beta αβ 变换)

Clarke 变换如下图所示:从 abc 三相静止坐标系变换到 α β \alpha \beta αβ 两相静止坐标系。
Clarke变换

abc 三相静止坐标系与 α β \alpha \beta αβ 两相静止坐标系的关系如下图所示:
abc与αβ坐标系关系

坐标变换需要遵循磁动势守恒:
N 1 i α = N 2 i A − N 2 i B cos ⁡ ( 60 ° ) − N 2 i C cos ⁡ ( 60 ° ) N 1 i β = N 2 i B sin ⁡ ( 60 ° ) − N 2 i C sin ⁡ ( 60 ° ) (2) \begin{aligned} N_1 i_{\alpha} &= N_2 i_A - N_2 i_B \cos (60°) - N_2 i_C \cos (60°) \\ N_1 i_{\beta} &= N_2 i_B \sin (60°) - N_2 i_C \sin (60°) \end{aligned} \tag{2} N1iαN1iβ=N2iAN2iBcos(60°)N2iCcos(60°)=N2iBsin(60°)N2iCsin(60°)(2)
化简为矩阵形式:
[ i α i β ] = N 2 N 1 [ 1 − 1 2 − 1 2 0 3 2 − 3 2 ] [ i A i B i C ] (3) \begin{bmatrix}i_{\alpha} \\i_{\beta}\end{bmatrix}= \frac{N_2}{N_1}\begin{bmatrix}1 & - \frac{1}{2} & - \frac{1}{2} \\0 & \frac{\sqrt{3}}{2} & - \frac{\sqrt{3}}{2}\end{bmatrix}\begin{bmatrix}i_A \\i_B \\i_C\end{bmatrix}\tag{3} [iαiβ]=N1N2[102123 2123 ] iAiBiC (3)
k = N 2 N 1 k = \frac{N_2}{N_1} k=N1N2 即可得到 Clarke 变换矩阵:
C 3 s / 2 s = k [ 1 − 1 2 − 1 2 0 3 2 − 3 2 ] (4) C_{3s/2s} = k\begin{bmatrix}1 & - \frac{1}{2} & - \frac{1}{2} \\0 & \frac{\sqrt{3}}{2} & - \frac{\sqrt{3}}{2}\end{bmatrix}\tag{4} C3s/2s=k[102123 2123 ](4)
因为坐标变换不是唯一的,所以需要根据不同的约束条件来确定不同的 k k k 值,电机控制中一般使用恒幅值或者恒功率约束。

2.1 恒幅值变换

恒幅值约束在于变量在变换前后的幅值不变,因为三相电流都为正弦量,且时间相位上互差 120°,因此:
i A = I cos ⁡ ( ω t ) i B = I cos ⁡ ( ω t + 120 ° ) i C = I cos ⁡ ( ω t − 120 ° ) (5) \begin{aligned} i_A &= I \cos (\omega t) \\ i_B &= I \cos (\omega t + 120°) \\ i_C &= I \cos (\omega t - 120°) \end{aligned} \tag{5} iAiBiC=Icos(ωt)=Icos(ωt+120°)=Icos(ωt120°)(5)
由上述推导可知:
i α = k ( i A − 1 2 i B − 1 2 i C ) i β = 3 2 k ( i B − i C ) (6) \begin{aligned} i_{\alpha} &= k (i_A - \frac{1}{2} i_B - \frac{1}{2} i_C) \\ i_{\beta} &= \frac{\sqrt{3}}{2} k (i_B - i_C) \end{aligned} \tag{6} iαiβ=k(iA21iB21iC)=23 k(iBiC)(6)
又因为
i A + i B + i C = 0 (7) i_A + i_B + i_C = 0 \tag{7} iA+iB+iC=0(7)
所以
i α = k ( i A − 1 2 i B − 1 2 i C ) = 3 2 k I cos ⁡ ( ω t ) i β = 3 2 k ( i B − i C ) = − 3 2 k I sin ⁡ ( ω t ) (8) \begin{aligned} i_{\alpha} &= k (i_A - \frac{1}{2} i_B - \frac{1}{2} i_C) = \frac{3}{2} k I \cos (\omega t) \\ i_{\beta} &= \frac{\sqrt{3}}{2} k (i_B - i_C) = - \frac{3}{2} k I \sin (\omega t) \end{aligned} \tag{8} iαiβ=k(iA21iB21iC)=23kIcos(ωt)=23 k(iBiC)=23kIsin(ωt)(8)
要保证恒幅值,则:
k = 2 3 k = \frac{2}{3} k=32

2.2 恒功率变换

恒功率约束在于变换前后的功率保持不变,即输入三相功率等于变换后的两相功率。因为三相电流都为正弦量,且时间相位上互差 120°,因此:
u A = U cos ⁡ ( ω t ) u B = U cos ⁡ ( ω t + 120 ° ) u C = U cos ⁡ ( ω t − 120 ° ) (9) \begin{aligned} u_A &= U \cos (\omega t) \\ u_B &= U \cos (\omega t + 120°) \\ u_C &= U \cos (\omega t - 120°) \end{aligned} \tag{9} uAuBuC=Ucos(ωt)=Ucos(ωt+120°)=Ucos(ωt120°)(9)
变换前的功率为:
P 1 = 3 × U × I = 3 U I (10) P_1 = 3 \times U \times I = 3 U I \tag{10} P1=3×U×I=3UI(10)
由前面的推导可知,变换后电流幅值由 I I I 变为 3 2 k I \frac{3}{2} k I 23kI,同理可得电压幅值变为 3 2 k U \frac{3}{2} k U 23kU,则变换后的功率为:
P 2 = 2 × 3 2 k U × 3 2 k I = 9 2 k 2 U I (11) P_2 = 2 \times \frac{3}{2} k U \times \frac{3}{2} k I = \frac{9}{2} k^2 U I \tag{11} P2=2×23kU×23kI=29k2UI(11)
P 1 = P 2 P_1 = P_2 P1=P2 得:
k = 2 3 k = \sqrt{\frac{2}{3}} k=32

2.3 小结

Clarke 变换根据约束条件的不同有两种形式:恒幅值变换和恒功率变换。其变换如下:
[ i α i β ] = C 3 s / 2 s [ i A i B i C ] = k [ 1 − 1 2 − 1 2 0 3 2 − 3 2 ] [ i A i B i C ] { k = 2 3 , 恒幅值变换 k = 2 3 , 恒功率变换 (12) \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} = C_{3s/2s} \begin{bmatrix} i_A \\ i_B \\ i_C \end{bmatrix} = k \begin{bmatrix} 1 & - \frac{1}{2} & - \frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & - \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} i_A \\ i_B \\ i_C \end{bmatrix} \quad \begin{cases} k = \frac{2}{3},&\text{恒幅值变换} \\ k = \sqrt{\frac{2}{3}},&\text{恒功率变换} \end{cases} \tag{12} [iαiβ]=C3s/2s iAiBiC =k[102123 2123 ] iAiBiC {k=32k=32 恒幅值变换恒功率变换(12)

3 Park 变换( α β \alpha \beta αβ/dq 变换)

Park 变换如下图所示:从 α β \alpha \beta αβ 两相静止坐标系变换到 dq 两相旋转坐标系。
Park变换

α β \alpha \beta αβ 两相静止坐标系与 dq 两相旋转坐标系的关系如下图所示:
αβ与dq坐标系关系

根据上图,由磁动势守恒:

i d = i α cos ⁡ ( θ ) + i β sin ⁡ ( θ ) i q = − i α sin ⁡ ( θ ) + i β cos ⁡ ( θ ) (13) \begin{aligned} i_d &= i_{\alpha} \cos (\theta) + i_{\beta} \sin (\theta) \\ i_q &= - i_{\alpha} \sin (\theta) + i_{\beta} \cos (\theta) \end{aligned} \tag{13} idiq=iαcos(θ)+iβsin(θ)=iαsin(θ)+iβcos(θ)(13)

写成矩阵形式即可得到 Park 变换:

[ i d i q ] = [ cos ⁡ ( θ ) sin ⁡ ( θ ) − sin ⁡ ( θ ) cos ⁡ ( θ ) ] [ i α i β ] (14) \begin{bmatrix} i_d \\ i_q \end{bmatrix} = \begin{bmatrix} \cos (\theta) & \sin (\theta) \\ - \sin (\theta) & \cos (\theta) \end{bmatrix} \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} \tag{14} [idiq]=[cos(θ)sin(θ)sin(θ)cos(θ)][iαiβ](14)

则 Park 变换矩阵为:

C 2 s / 2 r = [ cos ⁡ ( θ ) sin ⁡ ( θ ) − sin ⁡ ( θ ) cos ⁡ ( θ ) ] (15) C_{2s/2r} = \begin{bmatrix} \cos (\theta) & \sin (\theta) \\ - \sin (\theta) & \cos (\theta) \end{bmatrix} \tag{15} C2s/2r=[cos(θ)sin(θ)sin(θ)cos(θ)](15)

4 总结

Clarke 变换:

[ i α i β ] = C 3 s / 2 s [ i A i B i C ] = k [ 1 − 1 2 − 1 2 0 3 2 − 3 2 ] [ i A i B i C ] { k = 2 3 , 恒幅值变换 k = 2 3 , 恒功率变换 (16) \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} = C_{3s/2s} \begin{bmatrix} i_A \\ i_B \\ i_C \end{bmatrix} = k \begin{bmatrix} 1 & - \frac{1}{2} & - \frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & - \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} i_A \\ i_B \\ i_C \end{bmatrix} \quad \begin{cases} k = \frac{2}{3},&\text{恒幅值变换} \\ k = \sqrt{\frac{2}{3}},&\text{恒功率变换} \end{cases} \tag{16} [iαiβ]=C3s/2s iAiBiC =k[102123 2123 ] iAiBiC {k=32k=32 恒幅值变换恒功率变换(16)

Park 变换:

[ i d i q ] = C 2 s / 2 r [ i α i β ] = [ cos ⁡ ( θ ) sin ⁡ ( θ ) − sin ⁡ ( θ ) cos ⁡ ( θ ) ] [ i α i β ] (17) \begin{bmatrix} i_d \\ i_q \end{bmatrix} = C_{2s/2r} \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} = \begin{bmatrix} \cos (\theta) & \sin (\theta) \\ - \sin (\theta) & \cos (\theta) \end{bmatrix} \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} \tag{17} [idiq]=C2s/2r[iαiβ]=[cos(θ)sin(θ)sin(θ)cos(θ)][iαiβ](17)

参考文献

[1] 付兴贺,陈锐.电机中 ABC 到 dq0 坐标变换的梳理与辨析[J].微特电机,2021,49(04):1-8+13.


Matlab 的 dq 变换模块到底选哪一种变换方式?

90 degree behind phase A axis 和 Aligned with phase A axis 有什么区别?

爱代码的小黄人 于 2022-10-19 23:00:25 发布

我们在使用 Matlab 的 dq 变换模块时,发现 dq 变换模块有两种变换方式:

dq模块

在这里插入图片描述

选择 Aligned with phase A axis 还是 90 degree behind phase A axis?

通过查阅 Matlab 官方派克变换模块介绍:

abc 到 dq0 模块使用 Park 变换将三相 (abc) 信号变换为 dq0 旋转参考系。旋转框架的角位置由输入 ω t \omega t ωt 给出,以 rad 为单位。

dq0 到 abc 模块使用逆 Park 变换将 dq0 旋转参考系变换为三相 (abc) 信号。旋转框架的角位置由输入 ω t \omega t ωt 给出,以 rad 为单位。

该模块支持用于 Park 转换的两种约定:

  • 当旋转坐标系在 t = 0 t = 0 t=0 时与 A 相轴对齐时,即在 t = 0 t = 0 t=0 时,d 轴与 a 轴对齐。这种类型的 Park 变换也称为基于余弦的 Park 变换。
  • 当旋转框架在相位 A 轴后 90 度对齐时,即在 t = 0 t = 0 t=0 时,q 轴与 a 轴对齐。这种类型的 Park 变换也称为基于正弦的 Park 变换。在具有三相同步和异步电机的 Simscape™ Electrical™ 专用电力系统模型中使用此转换。

Aligned with phase A axis

中国的课本一般使用这个公式。

  • 派克正变换(基于余弦)
    u d = 2 3 [ cos ⁡ ( ω t ) ⋅ u a + cos ⁡ ( ω t − 2 π 3 ) ⋅ u b + cos ⁡ ( ω t + 2 π 3 ) ⋅ u c ] u q = 2 3 [ − sin ⁡ ( ω t ) ⋅ u a − sin ⁡ ( ω t − 2 π 3 ) ⋅ u b − sin ⁡ ( ω t + 2 π 3 ) ⋅ u c ] u 0 = 1 2 ( u a + u b + u c ) \begin{aligned} u_d &= \frac{2}{3} \left[ \cos (\omega t) \cdot u_a + \cos \left( \omega t - \frac{2 \pi}{3} \right) \cdot u_b + \cos \left( \omega t + \frac{2 \pi}{3} \right) \cdot u_c \right] \\ u_q &= \frac{2}{3} \left[ - \sin (\omega t) \cdot u_a - \sin \left( \omega t - \frac{2 \pi}{3} \right) \cdot u_b - \sin \left( \omega t + \frac{2 \pi}{3} \right) \cdot u_c \right] \\ u_0 &= \frac{1}{2} (u_a + u_b + u_c) \end{aligned} uduqu0=32[cos(ωt)ua+cos(ωt32π)ub+cos(ωt+32π)uc]=32[sin(ωt)uasin(ωt32π)ubsin(ωt+32π)uc]=21(ua+ub+uc)

[ u d u q u 0 ] = 2 3 [ cos ⁡ ( ω t ) cos ⁡ ( ω t − 2 π 3 ) cos ⁡ ( ω t + 2 π 3 ) − sin ⁡ ( ω t ) − sin ⁡ ( ω t − 2 π 3 ) − sin ⁡ ( ω t + 2 π 3 ) 1 2 1 2 1 2 ] [ u a u b u c ] \left[\begin{array}{l} u_d \\ u_q \\ u_0 \end{array}\right]=\frac{2}{3}\left[\begin{array}{ccc} \cos (\omega t) & \cos \left(\omega t-\frac{2 \pi}{3}\right) & \cos \left(\omega t+\frac{2 \pi}{3}\right) \\ -\sin (\omega t) & -\sin \left(\omega t-\frac{2 \pi}{3}\right) & -\sin \left(\omega t+\frac{2 \pi}{3}\right) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{array}\right]\left[\begin{array}{l} u_a \\ u_b \\ u_c \end{array}\right] uduqu0 =32 cos(ωt)sin(ωt)21cos(ωt32π)sin(ωt32π)21cos(ωt+32π)sin(ωt+32π)21 uaubuc

  • 派克逆变换(基于余弦)
    u a = cos ⁡ ( ω t ) ⋅ u d − sin ⁡ ( ω t ) ⋅ u q + u 0 u b = cos ⁡ ( ω t − 2 π 3 ) ⋅ u d − sin ⁡ ( ω t − 2 π 3 ) ⋅ u q + u 0 u c = cos ⁡ ( ω t + 2 π 3 ) ⋅ u d − sin ⁡ ( ω t + 2 π 3 ) ⋅ u q + u 0 \begin{aligned} u_a &= \cos (\omega t) \cdot u_d - \sin (\omega t) \cdot u_q + u_0 \\ u_b &= \cos \left( \omega t - \frac{2 \pi}{3} \right) \cdot u_d - \sin \left( \omega t - \frac{2 \pi}{3} \right) \cdot u_q + u_0 \\ u_c &= \cos \left( \omega t + \frac{2 \pi}{3} \right) \cdot u_d - \sin \left( \omega t + \frac{2 \pi}{3} \right) \cdot u_q + u_0 \end{aligned} uaubuc=cos(ωt)udsin(ωt)uq+u0=cos(ωt32π)udsin(ωt32π)uq+u0=cos(ωt+32π)udsin(ωt+32π)uq+u0

[ u a u b u c ] = [ cos ⁡ ( ω t ) − sin ⁡ ( ω t ) 1 cos ⁡ ( ω t − 2 π 3 ) − sin ⁡ ( ω t − 2 π 3 ) 1 cos ⁡ ( ω t + 2 π 3 ) − sin ⁡ ( ω t + 2 π 3 ) 1 ] [ u d u q u 0 ] \left[\begin{array}{l} u_a \\ u_b \\ u_c \end{array}\right]=\left[\begin{array}{ccc} \cos (\omega t) & -\sin (\omega t) & 1 \\ \cos \left(\omega t-\frac{2 \pi}{3}\right) & -\sin \left(\omega t-\frac{2 \pi}{3}\right) & 1 \\ \cos \left(\omega t+\frac{2 \pi}{3}\right) & -\sin \left(\omega t+\frac{2 \pi}{3}\right) & 1 \end{array}\right]\left[\begin{array}{l} u_d \\ u_q \\ u_0 \end{array}\right] uaubuc = cos(ωt)cos(ωt32π)cos(ωt+32π)sin(ωt)sin(ωt32π)sin(ωt+32π)111 uduqu0

90 degree behind phase A axis

ω t = 0 \omega t = 0 ωt=0 处的旋转坐标系对齐在相位 A 轴后 90 度时,Mag = 1 和 Phase = 0 度的正序信号产生以下 dq 值: d = 1 d = 1 d=1 q = 0 q = 0 q=0
在这里插入图片描述

此时的公式为:

  • 派克正变换(基于正弦)
    u d = 2 3 [ sin ⁡ ( ω t ) ⋅ u a + sin ⁡ ( ω t − 2 π 3 ) ⋅ u b + sin ⁡ ( ω t + 2 π 3 ) ⋅ u c ] u q = 2 3 [ cos ⁡ ( ω t ) ⋅ u a + cos ⁡ ( ω t − 2 π 3 ) ⋅ u b + cos ⁡ ( ω t + 2 π 3 ) ⋅ u c ] u 0 = 1 2 ( u a + u b + u c ) \begin{aligned} u_d &= \frac{2}{3} \left[ \sin (\omega t) \cdot u_a + \sin \left( \omega t - \frac{2 \pi}{3} \right) \cdot u_b + \sin \left( \omega t + \frac{2 \pi}{3} \right) \cdot u_c \right] \\ u_q &= \frac{2}{3} \left[ \cos (\omega t) \cdot u_a + \cos \left( \omega t - \frac{2 \pi}{3} \right) \cdot u_b + \cos \left( \omega t + \frac{2 \pi}{3} \right) \cdot u_c \right] \\ u_0 &= \frac{1}{2} (u_a + u_b + u_c) \end{aligned} uduqu0=32[sin(ωt)ua+sin(ωt32π)ub+sin(ωt+32π)uc]=32[cos(ωt)ua+cos(ωt32π)ub+cos(ωt+32π)uc]=21(ua+ub+uc)

[ u d u q u 0 ] = 2 3 [ sin ⁡ ( ω t ) sin ⁡ ( ω t − 2 π 3 ) sin ⁡ ( ω t + 2 π 3 ) cos ⁡ ( ω t ) cos ⁡ ( ω t − 2 π 3 ) cos ⁡ ( ω t + 2 π 3 ) 1 2 1 2 1 2 ] [ u a u b u c ] \left[\begin{array}{l} u_d \\ u_q \\ u_0 \end{array}\right]=\frac{2}{3}\left[\begin{array}{ccc} \sin (\omega t) & \sin \left(\omega t-\frac{2 \pi}{3}\right) & \sin \left(\omega t+\frac{2 \pi}{3}\right) \\ \cos (\omega t) & \cos \left(\omega t-\frac{2 \pi}{3}\right) & \cos \left(\omega t+\frac{2 \pi}{3}\right) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{array}\right]\left[\begin{array}{l} u_a \\ u_b \\ u_c \end{array}\right] uduqu0 =32 sin(ωt)cos(ωt)21sin(ωt32π)cos(ωt32π)21sin(ωt+32π)cos(ωt+32π)21 uaubuc

  • 派克逆变换(基于正弦)
    u a = sin ⁡ ( ω t ) ⋅ u d + cos ⁡ ( ω t ) ⋅ u q + u 0 u b = sin ⁡ ( ω t − 2 π 3 ) ⋅ u d + cos ⁡ ( ω t − 2 π 3 ) ⋅ u q + u 0 u c = sin ⁡ ( ω t + 2 π 3 ) ⋅ u d + cos ⁡ ( ω t + 2 π 3 ) ⋅ u q + u 0 \begin{aligned} u_a &= \sin (\omega t) \cdot u_d + \cos (\omega t) \cdot u_q + u_0 \\ u_b &= \sin \left( \omega t - \frac{2 \pi}{3} \right) \cdot u_d + \cos \left( \omega t - \frac{2 \pi}{3} \right) \cdot u_q + u_0 \\ u_c &= \sin \left( \omega t + \frac{2 \pi}{3} \right) \cdot u_d + \cos \left( \omega t + \frac{2 \pi}{3} \right) \cdot u_q + u_0 \end{aligned} uaubuc=sin(ωt)ud+cos(ωt)uq+u0=sin(ωt32π)ud+cos(ωt32π)uq+u0=sin(ωt+32π)ud+cos(ωt+32π)uq+u0

[ u a u b u c ] = [ sin ⁡ ( ω t ) cos ⁡ ( ω t ) 1 sin ⁡ ( ω t − 2 π 3 ) cos ⁡ ( ω t − 2 π 3 ) 1 sin ⁡ ( ω t + 2 π 3 ) cos ⁡ ( ω t + 2 π 3 ) 1 ] [ u d u q u 0 ] \left[\begin{array}{l} u_a \\ u_b \\ u_c \end{array}\right]=\left[\begin{array}{ccc} \sin (\omega t) & \cos (\omega t) & 1 \\ \sin \left(\omega t-\frac{2 \pi}{3}\right) & \cos \left(\omega t-\frac{2 \pi}{3}\right) & 1 \\ \sin \left(\omega t+\frac{2 \pi}{3}\right) & \cos \left(\omega t+\frac{2 \pi}{3}\right) & 1 \end{array}\right]\left[\begin{array}{c} u_d \\ u_q \\ u_0 \end{array}\right] uaubuc = sin(ωt)sin(ωt32π)sin(ωt+32π)cos(ωt)cos(ωt32π)cos(ωt+32π)111 uduqu0

使用方式

Matlab 的 dq 模块默认使用 90 degree behind phase A axis。

如果使用基于余弦的派克变换,则将模块的变换选择为 Aligned with phase A axis。

但需要注意,正变换和逆变换的变换方式必须一致,否则最终的控制无法同频同相。


易混 | 4 种派克 (Park) 变换、克拉克(Clark)变换与基于 dq 轴解耦的双闭环控制的关系

交代自己 似鸥电气 2019 年 07 月 16 日 18:13

“由于国内外研究人员对 abc 坐标系与 dq 轴的定义不同,造成了 Park 变换矩阵的多种多样,本文则从 4 种定义的 abc 坐标系与 dq 轴出发,解释了 4 种 Park 矩阵的由来”

4 种派克 (Park) 变换、克拉克 (Clark) 变换与基于 dq 轴解耦的双闭环控制之间的关系 (一)

第一部分 4 种派克 (Park) 变换矩阵的由来

01 引言

你见过的 Park 变换矩阵可能有以下 4 种形式,另外还有 4 种对应的形式,只是系数由 2 3 \frac {2}{3} 32 改为 2 3 \sqrt {\frac {2}{3}} 32

图片

在学习和应用 Park 变换过程中,许多研究者可能会感到困惑。Park 变换矩阵的基本原理相对经典且基础,但由于其涉及多种标准和仿真软件模块,容易引发混淆。这种混淆主要源于不同地区使用者所遵循的标准不一致,以及各类仿真软件内置的 Park 变换模块存在差异。当前,新发表的文章和出版的书籍大多直接使用各种形式的 Park 矩阵,而未深入阐述其原理。然而,每种 Park 矩阵的使用都有其特定前提条件,若不理解原理而盲目套用,可能导致仿真结果出现错误。

此外,尽管现有仿真软件提供了一些简单实例供学习参考,但如果不能正确使用某一软件中的 Park 变换模块,或者受到其他软件中对应模块的影响,同样无法获得预期结果,甚至可能引发自我怀疑,误认为某些软件或文献中的结构存在错误。

这类似于从常德前往北京,可以选择开车、乘坐火车或飞机等多种交通方式,但不能混用或误用这些工具,例如在火车上或飞机上开车,否则将无法到达目的地。因此,接下来将介绍如何正确认识、区分和运用这些工具,以避免得出错误结论。

02 基本原理

2.1 第一种 Park 变换矩阵

设系统三相电压如式 (1) 所示。

图片

系统三相电压 v a b c v_{abc} vabc 在 abc 三相静止坐标系与 dq 同步旋转坐标系中的关系如图 1 所示。

图片

图 1 第一种 abc 三相静止坐标系与 dq 同步旋转坐标系的关系

正常情况下,在 abc 三相电压中,a 相相位超前 b 相 120 度,且 a 相相位超前 c 相 240 度 。在图 1 中,abc 三相电压给人的感觉是,a 相相位超前 c 相 120 度,且 a 相相位超前 b 相 240 度 。其实,abc 三相的相序并没有改变,产生上述两种不同情况的原因在于,前一种是通过时间矢量图描述 abc 三相的关系,而图 1 是通过空间矢量图描述 abc 三相的关系,SVPWM 中会经常用到空间矢量图,而且这与物理中描述物体简谐运动的旋转矢量法类似。

由图 1 可知

图片

结合式 (1) 和式 (2) 可得

图片

图片

图片

则式 (3) 至式 (5) 的关系可得到

Clark 变换为:

图片

Clark 反变换为:图片

将 dq 轴电压向 αβ 坐标轴投影,可得

图片

图片

所以 Park 变换为:

图片

图片

一般为了使 Park 矩阵可逆,会引入 0 轴坐标,且

图片

图片

图片

式 (14) 中 θ \theta θ 为 d 轴与相位参考轴的夹角,一般取为 U a U_a Ua 的相角,后续还会区分怎样由 PLL 获取 U a U_a Ua 的相角,以及是否需要偏移 PLL 输出角度。

2.2 第 2 种 Park 变换矩阵

图片

图 2 第二种 abc 三相静止坐标系与 dq 同步旋转坐标系的关系

由图 2 可知,由于 abc 坐标轴与 αβ 坐标轴的关系和图 1 中的关系相同,所以以图 2 为标准的 Clark 变换与以图 1 为标准的 Clark 变换相同,后面相同的 Clark 变换则不再叙述。

将 dq 轴电压向 αβ 坐标轴投影,可得

图片

图片

图片

所以 Park 变换为:

图片

对应 Park 反变换为:

图片

2.3 第 3 种 Park 变换矩阵

图片

图 3 第三种 abc 三相静止坐标系与 dq 同步旋转坐标系的关系

将 dq 轴电压向 αβ 坐标轴投影,可得

图片

图片

图片

所以 Park 矩阵为

图片

Park 反变换为:

图片

2.4 第 4 种 Park 变换矩阵

图片

图 4 第四种 abc 三相静止坐标系与 dq 同步旋转坐标系的关系

将 dq 轴电压向 αβ 坐标轴投影,可得

图片

图片

图片

所以 Park 矩阵为

图片

Park 反变换为:

图片

03 总结

本文只对 Park 和 Clark 的等幅变换进行了简单阐述,其等功率变换同样对应着 4 种形式,之后若有兴趣还会阐述。

其实,本文的关键就在于图 1 至图 4 。在知晓 abc 三相静止坐标系与 dq 同步旋转坐标系的 4 种关系后,想要推导出 4 种 Park 矩阵,并弄懂它们之间的区别与联系也就较为容易了。

为便于读者依据文中内容,通过 PSCAD 或者 Matlab 进行仿真验证,现给出文中 Park 矩阵和各软件中模块的对应关系:

  • 文中第 1 种 Park 变换对应 Matlab 中 abc/dq0 模块的第 1 种 Park 矩阵;

  • 文中第 2 种 Park 变换对应 PSCAD 中 abc/dq0 模块的 Park 矩阵;

  • 文中第 3 种 Park 变换对应 Matlab 中 abc/dq0 模块的第 2 种 Park 矩阵;

  • 文中第 4 种 Park 变换暂未找到对应应用 。

    第一种和第二种 Park 矩阵的 q 轴分量相反,第三种和第四种 Park 矩阵的 q 轴分量相反,其值互为相反数。

    若有同学想要推导,可以只推导第一种矩阵,后面三种只需要对第一种进行简单改写即可得到。


第二部分 PLL 输出相位与 Park 变换矩阵输入角度之间的关系

努力做完这期的 似鸥电气 2019 年 07 月 22 日 09:02

“在使用 4 种派克 (Park) 变换矩阵时,怎样做到锁相环 (PLL) 输出相角与 Park 矩阵中的 θ \theta θ 匹配?将 PLL 输出角度作为 Park 矩阵的 θ \theta θ 角度时,为什么需要偏移 90 度?”

4 种派克 (Park) 变换、克拉克 (Clark) 变换与基于 dq 轴解耦的双闭环控制之间的关系 (二)

01. 背景

图 1 至图 4 描述了 abc 三相静止坐标系与 dq 同步旋转坐标系之间的关系。在第一部分已经分别介绍过其对应 Park 变换矩阵,且图 1 和图 2 中 θ \theta θ v d v_d vd v a v_a va 的夹角,而图 3 和图 4 中 θ \theta θ v d v_d vd v β v_β vβ 负半轴的夹角。

图片

图 1 abc 三相静止坐标系与 dq 同步旋转坐标系的关系 (1)

图片

图 2 abc 三相静止坐标系与 dq 同步旋转坐标系的关系 (2)

图片

图 3 abc 三相静止坐标系与 dq 同步旋转坐标系的关系 (3)

图片

图 4 abc 三相静止坐标系与 dq 同步旋转坐标系的关系 (4)

02. 如何判断三相电压为 “正弦形式” 或 “余弦形式”?

图 5 为物理中描述物体简谐运动的旋转矢量法示意图。当旋转矢量的初始位置为图中紫色点时,矢量旋转一周其值将经历 A、0、-A、0 的大小变化;当旋转矢量的初始位置为图中蓝色点时,矢量旋转一周其值将经历 0、A、0、-A 的大小变化。此处称以紫色点为初始位置的运动为余弦形式,而以蓝色点为初始位置的运动为正弦形式。对于图 1 至图 4 中的 a 相电压,由于 a 相电压参考轴与 α \alpha α 轴正方向重合,所以图 1 至图 4 中的 a 相电压均为余弦形式,但由于图 1、图 2 与图 3、图 4 中 θ \theta θ 的初始位置不同,导致 PLL 输出角的设置也有所不同。

图片

图 5 旋转矢量法示意图

图 6 为系统侧 a 相电压与 PLL 输出相位的关系,从图中可以看出 PLL 输出相角在 0~2π 之间变化,而且当 a 相电压为周期中第一个 0 值点(下一时刻将由 0 向正值增加),PLL 输出相位也为 0 。由于 PLL 输出的是 a 相电压的相位,所以只有正弦形式的 a 相电压才能表现出如图 6 中的特征。

图片

图 6 系统侧 a 相电压与 PLL 输出相位的关系

综上所述,图 1 至图 4 中 a 相电压均为余弦形式,Park 矩阵也是在余弦形式电压下推导所得,而 PLL 输出相位为正弦形式 a 电压的相位,所以 PLL 输出相位需要经过偏移才能输入给 Park 矩阵。

03. 如何设置 PLL,使其适用于第一、二种 Park 变换矩阵?

Park 矩阵中一般取 θ \theta θ 为 a 相电气量的相位,则可使 d 轴分量等于三相合成矢量的有效值,q 轴分量等于 0 。

如前所述,在系统侧三相电压为余弦形式时推导得到第一种 Park 变换矩阵,而锁相环 (PLL) 的相位偏移设置为 0 时,其输出相位为系统侧三相电压为正弦形式时 a 相的相位。所以为了使 PLL 输出相位与第一种 Park 矩阵匹配,需要将 PLL 输出的相位移相 90 度。

在 Matlab/simulink 中,可以将 PLL 输出相位减 π 2 \frac {\pi}{2} 2π,然后对 2π 取模得到 Park 所需的输入角度 θ \theta θ

图片

在 PSCAD 中:①可以直接在 PLL 模块中输入要偏移的角度 ( π 2 \frac {\pi}{2} 2π);②也可以将偏移角度设置为 0,然后像 Matlab 中那样将 PLL 输出相位减 π 2 \frac {\pi}{2} 2π,然后对 2π 取模值得到 Park 所需的输入角度 θ \theta θ ,PSCAD 中好像没有取模计算的模块,需要编写自定义模块。

图片

图 7 表示 PLL 输出角度偏移 90 度后与 a 相电压的关系,可见图中蓝线表示了余弦形式电压的相位变化情况。

图片

图 7 移相后 a 相电压与 PLL 输出相位的关系

04. 如何设置 PLL,使其适用于第三、四种 Park 变换矩阵?

虽然第三、四种 Park 变换矩阵也是在余弦形式电压下推导而得,但是 Park 矩阵中 θ \theta θ 的参考轴却是 v β v_β vβ 负半轴, θ \theta θ 的大小已经比 a 相电压小 π 2 \frac {\pi}{2} 2π,所以无需再将 PLL 输出角度偏移 π 2 \frac {\pi}{2} 2π

图片

05. 总结

对于 “第一部分 4 种派克 (Park) 变换矩阵的由来” 中的 4 种 Park 变换矩阵:第一种和第二种 Park 变换矩阵中的 θ \theta θ ,需要将 PLL 输出角度偏移 π 2 \frac {\pi}{2} 2π 才能与之匹配;第三种和第四种 Park 变换矩阵中的 θ \theta θ 不需要对 PLL 输出角度偏移即可匹配。


第三部分 电流内环控制与 4 种 Park 变换矩阵之间的关系

希望还有下一期的 似鸥电气 2019 年 07 月 30 日 10:47

“在 4 种 Park 变换下,为何电流内环控制器会表现出 2 种形式?如何合适或正确地设置电流内环控制结构?”

4 种派克 (Park) 变换、克拉克 (Clark) 变换与基于 dq 轴解耦的双闭环控制之间的关系 (三)

第三部分 电流内环控制与 4 种 Park 变换矩阵的关系

在学习逆变器或整流器的基本控制时,很多同学可能都会先学习 PSCAD、Matlab 等仿真软件中的 demo 。但是由于不同软件 demo 中采用的 Park 变换矩阵不同,导致了在相同的控制原理下,控制器的结构却表现出以下 2 种情况,如果 Park 变换矩阵与内环控制器的选择不匹配,则会导致仿真结果不理想。

图片

第一种电流内环控制器

图片

第二种电流内环控制器

针对以上问题,本文所述内容为:在 4 种 Park 变换矩阵下,如何设置合适或正确的电流内环控制结构。


01 三相换流器数学模型

三相换流器结构与相应电气量的位置和参考方向如图 1 所示。

图片

图 1 三相换流器示意图

图片

图片

图片

图片

由导数的四则运算可知:

图片

所以

图片

图片

图片

所以

图片

由于 Park 矩阵已经确定,所以上式可表示为:

图片


02 第 1 种 Park 变换矩阵下的内环控制器

由于 Park 矩阵有多种形式,此处为文中第 1 种 Park 矩阵,即:

图片

因为

图片

所以

图片

图片

图片

对上式运用拉普拉斯变换得:

图片

由上式可知每个等式中均既含有 i d i_d id 又含有 i q i_q iq,所以 dq 轴间存在耦合,需要进行解耦(配置的控制器要使每个通道中只含有 d 轴分量或者 q 轴分量,具体步骤可参考其他资料,此处不再赘述)。则控制器可设置为:

图片

则换流器的内环控制器和数学模型可表示成如下关系:

图片

图 2 第一种电流内环控制器

03 第 2 种 Park 变换矩阵下的内环控制器

当 Park 变换矩阵为:

图片

图片

图片

图片

图片

对上式运用拉普拉斯变换得:

图片

同样地,可以得到此种 Park 变换矩阵下的电流内环控制器为:

图片

图 3 第二种电流内环控制器

04 第 3 种和第 4 种 Park 变换矩阵下的内环控制器

在第 3 种和第 4 种 Park 变换矩阵下,内环控制器的表现形式也是上述第一种电流内环控制器或者第二种电流内环控制器,具体推导此处不再叙述。

05 总结

在 4 种 Park 变换矩阵下,由于下式的求解结果不同,才导致电流内环控制器表示出 2 种形式。

图片

第一种电流内环控制器在 Matlab 的换流器控制 demo 中被使用,第二种电流内环控制器在 PSCAD 的换流器控制 demo 中被使用。


第四部分 功率外环控制与 Park 变换矩阵之间的关系

不知道下期做啥的 似鸥电气 2019 年 08 月 07 日 21:53

“在 4 种 Park 变换矩阵下,如何用 abc 坐标和 dq 坐标系分别表示瞬时有功、无功功率?在 dq 轴坐标下为什么外环功率控制器有 2 种形式?”

4 种派克 (Park) 变换、克拉克 (Clark) 变换与基于 dq 轴解耦的双闭环控制之间的关系 (四)

第四部分 功率外环控制与 Park 变换矩阵之间的关系

abc 三相静止坐标系下系统侧有功功率 P s P_s Ps 和无功功率 Q s Q_s Qs 的求解公式是唯一的。根据瞬时功率理论,交流系统有功功率 P s P_s Ps 和无功功率 Q s Q_s Qs 分别为:

图片

但在 dq 同步旋转坐标系下,有功功率 P s P_s Ps 和无功功率 Q s Q_s Qs 表现出了以下 2 种形式:

图片

接下来介绍在 dq 同步旋转坐标系下,有功和无功功率表现两种形式的原因。

01 第一种 Park 变换矩阵下的有功功率和无功功率

第一种 Park 变换矩阵如下:

图片

其选用的 Clark 变换及其反变换矩阵如下:

图片

图片

推导方式一:

总体思路为,首先将 abc 坐标下的电气量变换到 α β \alpha\beta αβ 坐标,然后再将 α β \alpha\beta αβ 坐标下的电气量变换到 dq 坐标,从而得到 dq 坐标系下表示的有功功率和无功功率。

图片

由 Clark 反变换可知:

图片

图片

将式 (6)、式 (7) 代入式 (5) 中可得 α β \alpha\beta αβ 坐标下的有功功率为:

图片

系统发生不对称故障后,电压和电流会产生负序分量,则电压、电流可表示为:

图片

上式中上标 “+”、“-” 分别为电气量的正序和负序分量。将式 (9) 代入式 (8) 中得:

图片

由 Park 反变换得:

图片

图片

式中 f d f_d fd f q f_q fq 分别为电气量的 d 轴和 q 轴分量, f α f_{\alpha} fα f β f_{\beta} fβ 分别为电气量的 α \alpha α 轴和 β \beta β 轴分量,则

图片

当系统正常运行时,负序分量为 0,只有正序分量,且以 d 轴定向时 q 轴分量上的值也为 0(由于 d 轴、q 轴互相垂直,其矢量和为三相合成旋转矢量,d 轴定向就是让 d 轴分量与三相合成旋转矢量重合,则 q 轴分量为 0),则

图片

同理,将 abc 坐标下的瞬时无功功率变换到 α β \alpha\beta αβ 坐标系,可表示为:

图片

发生不对称故障后,电压和电流会有正序和负序分量,则电压电流可表示为:

图片

图片

由反 park 变换得:

图片

当系统正常运行时,只有正序分量,负序分量为 0,且以 d 轴定向,则

图片

推导方式二:

总体思路为直接将 abc 坐标下的电气量变换到 dq 坐标系下的各量,而不需要经过 αβ 坐标系的过渡。

由于

图片

图片

图片

直接将上式代入 abc 坐标系下的有功功率计算公式(该推导方式下,最好只考虑正序,考虑负序的话计算量较大),则可得到 dq 同步旋转坐标系下的 P s P_s Ps Q s Q_s Qs 为:

图片

当 d 轴以电网电压向量定位时,即 U s q = 0 U_{sq}=0 Usq=0,则上式可以写成下式,此处仅考虑基频正序分量:

图片

02 第二种 Park 变换矩阵下的有功功率和无功功率

图片

在第二种 Park 变换矩阵下,dq 轴坐标下的有功和无功功率的求解过程与第一种基本相同,但是由于 Park 变换矩阵的不同导致有功和无功功率的计算式有正负号的差别,此处不再计算直接给出结果,其值可表示为:

图片

03 第三种 Park 变换矩阵下的有功功率和无功功率

图片

在第三种 Park 变换矩阵下,dq 轴坐标下的有功和无功功率的求解过程也与第一种基本相同,此处不再计算,其值可表示为:

图片

04 第四种 Park 变换矩阵下的有功功率和无功功率

图片

在第四种 Park 变换矩阵下,dq 轴坐标下的有功和无功功率的求解过程也与第一种基本相同,此处不再计算,其值可表示为:

图片

05 总结

虽然 abc 坐标系下瞬时有功功率和无功功率的形式唯一,但由于 Park 变换矩阵的多种多样,导致在 dq 坐标下瞬时有功功率和无功功率表现出两组不同的形式,在构建仿真模型时,要根据选用的 Park 变换矩阵去选择合适的功率计算公式。

至此,这期四个部分,以 “4 种派克 (Park) 变换、克拉克(Clark)变换与基于 dq 轴解耦的双闭环控制之间的关系” 为主题的系列探讨就结束了。主要内容均是围绕 4 种 Park 变换展开,最原始的依据则是第一部分中 4 张 abc 坐标系与 dq 坐标系的关系图,只要弄懂这 4 张关系图,则其余部分中的结论均可推导得到。


via:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值