对于股民来讲,除息除权最直接的体现就是某只股票突然某天的价格比前一天的价格少了很多,大多数情况可能是价格直接比前一天少了一半。发生这样的情况先别紧张,这里是发生了除息除权,它并不会让你的资产受损。除息(exclude dividend,XD)指的是分派利息;除权(exclude right,XR)中的“权”指的是股权,即分配股权;除息除权(dividend right,DR)指的是除息和除权同时发生。
先来说说除息。除息之前你购买的股票的价值包含公司的价值和公司的未分配利润,在除息发生的时候,公司按照你的持股比例把公司未分配的利润以现金的形式分发给你,相应地你持有股票就仅仅包含公司的价值了(可能还存在少量未分配利润)。既然股票内在价值发生变动,那么价格自然也会发生变动,价格变动为
除息参考价(每股) = 前收盘价 - 每股现金红利
从公式中你可以看到,如果你持有该公司的股票,其实除息前后你的总资产其实并没有发生变化,只不过之前你的资金放在了股票中,现在一部分资金变成了现金。其实就是把一部分钱从左边口袋放到了右边口袋。
再来说说除权。除权通常可以分为股票股利分配(简称送股)、公积金转增股票(简称转股)和配股。前两个对股民来说没有太大的区别,它们和除息一样属于分红。最常见的形式比如10送5(10转5),其含义就是每10股股票送股5股(每10股转股5股)。假如手上有100股股票,发生送股(配股)之后,那么你手上就多出来了50股,你手中的股票数量就变为了150股。但其实你并没有占到便宜,因为相应的价格也会发生变动,价格变动为
除权参考价(每股) = 前收盘价 / (1 + 每股送股比例 + 每股转股比例)
配股稍有区别,配股的含义是给你一个权力能够以低于市价的某个价格优先认购一部分股票。举个例子来说,如果某公司股票价格为10元/股,该公司发布公告以2:1的比例增股发行,新股发行价为8.5元/股。如果你持有该公司的100股,那么你可以再花100 * (1/2) * 8.5 = 425元购买50股,这样你就拥有了该公司的150股股票,这150股的理论价值为10 * 100 + 8.5 * 50 = 1425元。但其实你也没占到便宜,因为这时股票的参考价变动为1425 / 150 = 9.5 元/股。
把除息除权这些事件全部写到公式中来即为
除权息参考价(每股) = [ (前收盘价 - 每股现金红利) + 配股价格 * 每股配股比例] / (1 + 每股送股比例 + 每股转股比例 + 每股配股比例)
首先,我们在量化分析中肯定会用到股票的历史价格信息。如果直接使用这一的价格信息,就会发现股票的价格会因为除息除权事件而变得不连续,这对于我们量化分析十分不友好。因此我们会使用复权数据,就是在除息除权发生的时候把这一段gap给接起来。那我们是把之前的数据接到之后的数据上还是把之后的数据接到之前的数据上呢?其实两种做法都有。
如果把之后的数据接到之前的数据上就叫做后复权,后复权数据以该公司股票发行日为起点,只有股票发行日到其历史上第一次除息除权之间的价格是真实的价格,之后的价格都比真实价格更大。如果把之前的数据接到之后的数据上就叫做前复权,前复权数据通常以最新交易日为基准点,这样最近一段时间内的价格是股票的真实价格。
从维护复权数据的角度上来说,前复权数据更难维护。对于一只股票来讲,一旦某一天发生了除息除权,就需要把该股票历史上所有价格数据都进行一次更新;而后复权数据则不存在这样的问题,某一日的后复权数据一旦给定就永远不会再改变了。
然而通常来讲,最近的数据我们希望其保真度更高,前复权数据就具有这样的一个优势,因为前复权数据能够准确反映最近一段时间的真实价格和价格变动。从价格绝对数值的角度来讲,股票的绝对价格过高会增加散户投资的门槛。以现在茅台的价格为例,茅台收盘740.40元/股,如果你想买入一手茅台需要花费将近七万五千块钱,对于小散户而言可能有些总共也就投个几万块来炒股,还不够买着一手茅台的。所以看来咱们小屁民不仅喝不起茅台,也买不起茅台股。因此,准确反映股票的绝对价格也是比较重要的。从价格变动的角度来讲,股票的最小价差为0.01元,因此我们通常四舍五入到第二位小数点就可以了;但是如果我们使用复权数据,总会有一段数据的价差与实际价差不一样。在这种情况下使用前复权数据就能更准确地反映最近的股市变化。