53. 最大子序和(贪心,动态规划,分治)

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:

如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-subarray
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

 贪心

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        #current_num作为目前和
        #新加[i]数了之后和此数比较,取较大一个作为新current_num值
        #因为是取最大值,所以比较后如果current_num<nums[i],说明之前的current_num是负的,可以全部舍弃
        #max_num作为最大和,每次在current_num比较后再比较更新
        n=len(nums)
        if n==0:
            return []
        current_num=nums[0]
        max_num=nums[0]
        for i in range(1,n):
            current_num=max(nums[i],current_num+nums[i])
            max_num=max(max_num,current_num)
        return max_num

动态规划 

def maxSubArray(self, nums: List[int]) -> int:
        n=len(nums)
        if n==0:
            return []
        
        for i in range(1,n):
            if nums[i-1]>0:
                nums[i] += nums[i-1]
        return max(nums)

分治(待续) 

在这里插入图片描述

 图片来自
链接:https://leetcode-cn.com/problems/maximum-subarray/solution/zui-da-zi-xu-he-by-leetcode/
来源:力扣(LeetCode)

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        if len(nums) == 1:
            return nums[0]
        middle = len(nums)//2
        #左边
        max_left = self.maxSubArray(nums[:middle])
        #右边
        max_right = self.maxSubArray(nums[middle:])
        #中间
        max_l =nums[middle-1] 
        tmp=0
        for i in range(middle-1, -1, -1):
            tmp += nums[i]
            max_l = max(tmp, max_l)
            
        max_r =nums[middle]
        tmp=0
        for i in range(middle,len(nums)):
            tmp +=nums[i]
            max_r = max(tmp, max_r)
        #取最大值
        return max(max_left,max_right,max_r+max_l)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值