Open VINO中级课程

中级课程

章节1-视频处理 & OpenVINO ™介绍

**课程安排:**相关章节含有对应实验

  1. 介绍实验
  2. 完整的推理流程
  3. 模型优化器
  4. 推理引擎
  5. 性能优化
  6. 完整的管道模拟
  7. 汇总

实验的具体流程:

  1. 建立一个深度学习模型
  2. 选择合适的设备(cpu/GPU/FPGA)
  3. 读入数据
  4. 数据推理(forward),并运行
  5. 获取标签,并在目标属性上绘制矩形,并存储

章节2-OpenVINO ™工具套件

模型优化器和推理引擎是整个系统的核心,模型优化器将模型转化成IR文件(包含.xml和.bin两个文件),并使用推理引擎送到最后的cpu等
请添加图片描述

感谢您了解学习【英特尔OpenVINO™工具套件】系列课程,为了能给您提供更好的课程体验,现诚邀您花费2分钟的时间填写关于本课程的调查问卷。我们将在填写问卷的同学中抽取5名幸运的小伙伴儿,每人赠送一张价值99元的CSDN·VIP月卡,感谢您的参与!问卷地址:https://t.csdnimg.cn/07Qv 英特尔® OpenVINO™工具套件中级课程面向有一定基础的学员。若您是一名计算视觉技术的初学者,我们将建议您先学习英特尔® OpenVINO™工具套件的初级课程,再进行中级课程的学习。本课程将主要介绍计算机视觉应用的相关知识,特别是英特尔® OpenVINO™工具套件的整体架构以及使用方法。整个课程的视频课程部分包含了OpenVINO™模型优化器和推理引擎的使用,视频解码的OpenCV,MediaSDK和Gstreamer的使用,AI应用中的推理优化,以及构建一套完整的视频推理AI应用的Demo演示。并且课程提供了动手实验环节,届时您将使用一个虚拟云终端进行操作实验。通过本课程的学习,将帮助您快速上手英特尔® OpenVINO™ 工具套件的使用方法,并且能够熟悉如何去快速构建一款AI应用。为保证您顺利收听课程参与测试获取证书,还请您使用电脑端进行课程学习!为了便于您更好的学习本次课程,推荐您在本地下载英特尔® OpenVINO™工具套件,下载地址:https://t.csdnimg.cn/yOf5Intel®Devcloud注册地址:https://devcloud.intel.com/收听中级课程并完成动手实验,可获得专属定制证书,还可以参与定制周边的抽奖活动! 初级课程学习:https://edu.csdn.net/course/detail/27685 请注意:点击报名即表示您确认您已年满18周岁,并且同意CSDN基于商务需求收集并使用您的个人信息,用于注册OpenVINO™工具套件及其课程。CSDN和英特尔会为您定制最新的科学技术和行业信息,将通过邮件或者短信的形式推送给您,您也可以随时取消订阅不再从CSDN或Intel接收此类信息。 查看更多详细信息请点击CSDN“用户服务协议”,英特尔“隐私声明”和“使用条款”。
手把手讲授如何搭建成功OpenVINO框架,并且使用预训练模型快速开发超分辨率、道路分割、汽车识别、人脸识别、人体姿态和行人车辆分析。得益于OpenVINO框架的强大能力,这些例子都能够基于CPU达到实时帧率。课程的亮点在于在调通Demo的基础上更进一步:一是在讲Demo的时候,对相关领域问题进行分析(比如介绍什么是超分辨率,有什么作用)、预训练模型的来龙去脉(来自那篇论文,用什么训练的)、如何去查看不同模型的输入输出参数、如何编写对应的接口参数进行详细讲解;二是基本上对所有的代码进行重构,也就是能够让例子独立出来,并且给出了带有较详细注释的代码;三是注重实际运用,将Demo进一步和实时视频处理框架融合,形成能够独立运行的程序,方便模型落地部署;四是重难点突出、注重总结归纳,对OpenVINO基本框架,特别是能够提高视频处理速度的异步机制和能够直接部署解决实际问题的骨骼模型着重讲解,帮助学习理解;五是整个课程准备精细,每一课都避免千篇一律,前一课有对后一课的预告,后一课有对前一课的难点回顾,避免学习过程中出现突兀;六是在适当的时候拓展衍生,不仅讲OpenVINO解决图像处理问题,而且还补充图像处理的软硬选择、如何在手机上开发图像处理程序等内容,帮助拓展视野,增强对行业现状的了解。基本提纲:1、课程综述、环境配置2、OpenVINO范例-超分辨率(super_resolution_demo)3、OpenVINO范例-道路分割(segmentation_demo)4、OpenVINO范例-汽车识别(security_barrier_camera_demo)5、OpenVINO范例-人脸识别(interactive_face_detection_demo)6、OpenVINO范例-人体姿态分析(human_pose_estimation_demo)7、OpenVINO范例-行人车辆分析(pedestrian_tracker_demo)8、NCS和GOMFCTEMPLATE9、课程小结,资源分享
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值