ChatGPT中的RAG;大模型微调;通过正确的提问和回答数据进行问答系统的微调;

1332 篇文章 ¥199.90 ¥299.90

目录

ChatGPT中的RAG

1.检索器:

2.生成器:

3.结合使用:

大模型微调

通过正确的提问和回答数据进行问答系统的微调


ChatGPT中的RAG

在ChatGPT中,RAG(Retrieval-Augmented Generation)是一种结合了检索与生成的技术,旨在提高模型的回答质量和准确性。

RAG模型通常由两个主要组件组成:检索器和生成器。

1.检索器:


RAG的检索器从一个外部知识库中检索相关信息。这个知识库可以是各种数据源,包括文档集、数据库或互联网信息。具体使用的知识库可能包括:
维基百科:经常用作知识库,因为它包含大量的结构化信息。专用领域文档:针对特定领域(如医学、法律等)可能会使用相应的文档集。企业内部知识库:一些应用可能会接入企业内部的数据源,以提供更符合业务需求的回答

2.生成器:


生成器基于检索到的信息来生成最终的回答。生成器通常是一个大型语言模型(如GPT),其训练是基于大规模文本数据,能够理解和生成自然语

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值