为什么 PPO 概率计算适合连续动作
PPO(近端策略优化)适合处理连续动作空间的原因主要与其基于策略梯度的框架、概率分布的参数化方式以及信任域优化机制有关
1. 策略梯度方法的天然优势
- 直接输出动作:PPO属于策略梯度(Policy Gradient)算法,其策略网络直接输出动作的概率分布参数(如均值和方差),而非像DQN那样输出离散动作的Q值。这种设计天然适合连续动作空间,因为连续动作需要具体的数值输出(如力的大小、角度等),而非从离散选项中选择。
- 示例:在机器人控制任务中,PPO的策略网络可以输出关节的目标角度(均值)和探索范围(方差),从而生成连续的控制信号。
2. 连续动作的概率分布参数化
- 高斯分布的灵活性:PPO通常用高斯分布(正态分布)来建模连续动作的概率分布:
- 均值(μ&#x