为什么 PPO 概率计算适合连续动作

1354 篇文章 ¥199.90 ¥299.90
950 篇文章 ¥199.90 ¥299.90
753 篇文章 ¥199.90 ¥299.90

为什么 PPO 概率计算适合连续动作

PPO(近端策略优化)适合处理连续动作空间的原因主要与其基于策略梯度的框架、概率分布的参数化方式以及信任域优化机制有关

1. 策略梯度方法的天然优势

  • 直接输出动作:PPO属于策略梯度(Policy Gradient)算法,其策略网络直接输出动作的概率分布参数(如均值和方差),而非像DQN那样输出离散动作的Q值。这种设计天然适合连续动作空间,因为连续动作需要具体的数值输出(如力的大小、角度等),而非从离散选项中选择。
  • 示例:在机器人控制任务中,PPO的策略网络可以输出关节的目标角度(均值)和探索范围(方差),从而生成连续的控制信号。

2. 连续动作的概率分布参数化

  • 高斯分布的灵活性:PPO通常用高斯分布(正态分布)来建模连续动作的概率分布:
    • 均值(μ&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值