Softmax和Normalization(归一化)区别: 概念范畴 Softmax:是一种特定的数学函数 ,专门用于将一组实数(logits)转换为概率分布,属于激活函数的一种,常用于多分类任务的输出层。例如在文本分类判断文章属于科技、娱乐、体育等类别时,Softmax可将模型输出的未处理数值转换为各类别的概率。 Normalization(归一化):是一类数据处理方法的统称,目的是调整数据的范围或分布,使不同尺度、量级的数据能放在一起比较和处理 ,包括多种具体技术,如Min - Max归一化、Z - Score标准化、Softmax归一化等。 计算方式 Softmax:对于输入的向量 x