Softmax与归一化:核心区别与应用场景

1354 篇文章 ¥199.90 ¥299.90
950 篇文章 ¥199.90 ¥299.90
753 篇文章 ¥199.90 ¥299.90

Softmax和Normalization(归一化)区别:

概念范畴

  • Softmax:是一种特定的数学函数 ,专门用于将一组实数(logits)转换为概率分布,属于激活函数的一种,常用于多分类任务的输出层。例如在文本分类判断文章属于科技、娱乐、体育等类别时,Softmax可将模型输出的未处理数值转换为各类别的概率。
  • Normalization(归一化):是一类数据处理方法的统称,目的是调整数据的范围或分布,使不同尺度、量级的数据能放在一起比较和处理 ,包括多种具体技术,如Min - Max归一化、Z - Score标准化、Softmax归一化等。

计算方式

  • Softmax:对于输入的向量 x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值