基于胡寿松主编的《自动控制原理》(第七版)附录的 M A T L A B {\rm MATLAB} MATLAB控制系统简单教程,快速了解 M A T L A B {\rm MATLAB} MATLAB在控制理论的应用,下载链接: MATLAB辅助分析与设计方法基础.
5.控制系统的校正
【实例分析 1 1 1:串联校正】
E
x
a
m
p
l
e
B
−
5
{\rm ExampleB-5}
ExampleB−5: 设单位负反馈系统的开环传递函数为:
G
(
s
)
=
K
s
(
s
+
1
)
G(s)=\frac{K}{s(s+1)}
G(s)=s(s+1)K
若要求系统在单位斜坡输入信号作用时,位置输出稳态误差
e
s
s
(
∞
)
≤
0.1
r
a
d
e_{ss}(\infty)≤0.1{\rm rad}
ess(∞)≤0.1rad,开环系统截止频率
ω
c
′
′
≥
4.4
r
a
d
/
s
\omega_c''≥4.4{\rm rad/s}
ωc′′≥4.4rad/s,相角裕度
γ
′
′
≥
45
°
\gamma''≥45°
γ′′≥45°,幅值裕度
h
′
′
d
B
≥
10
d
B
h''{\rm dB}≥10{\rm dB}
h′′dB≥10dB,设计串联无源超前网络。
设计步骤:
-
根据稳态误差要求,确定开环增益 K K K;
-
利用已确定的开环增益,计算待校正系统的幅值裕度、相角裕度及其对应的截止频率、穿越频率;
-
根据截止频率 ω c ′ ′ \omega_c'' ωc′′的要求,计算超前网络参数 a a a和 T T T;为保证系统的响应速度,并充分利用网络的相角超前特性,可选择最大超前角频率等于截止频率,即 ω m = ω c ′ ′ \omega_m=\omega_c'' ωm=ωc′′,其中 a a a由下式确定:
− L ′ ( ω c ′ ′ ) = L c ( ω m ) = 10 lg a -L'(\omega_c'')=L_c(\omega_m)=10\lg{a} −L′(ωc′′)=Lc(ωm)=10lga
再由下式确定 T T T值:
T = 1 ω m a T=\frac{1}{\omega_m\sqrt{a}} T=ωma1 -
确定无源超前网络和最大超前角 φ m \varphi_m φm;
a G c ( s ) = 1 + a T s 1 + T s , φ m = arcsin a − 1 a + 1 aG_c(s)=\frac{1+aTs}{1+Ts},\varphi_m=\arcsin\frac{a-1}{a+1} aGc(s)=1+Ts1+aTs,φm=arcsina+1a−1 -
验算已校正系统的幅值裕度、相角裕度及其对应的截止频率、穿越频率;若验算结果不满足指标要求,则重新选择 ω m \omega_m ωm,然后重复上述步骤;
% exampleB_5.m K=1/0.1; % 由稳态误差要求计算开环增益; G0=zpk([],[0 -1],K); % 开环系统模型; [h0,r,wx,wc]=margin(G0) % 计算校正前的幅值裕度、相角裕度及对应的截止频率、穿越频率 wm=4.4; % 试取校正系统的截止频率; L=bode(G0,wm); Lwc=20*log10(L); a=10^(-0.1*Lwc); % 确定超前校正网络参数a; T=1/(wm*sqrt(a)); % 确定超前校正网络参数T; phi=asin((a-1)/(a+1)); % 确定最大超前角; Gc=(1/a)*tf([a*T 1],[T 1]); % 确定超前网络传递函数; Gc=a*Gc; % 补偿无源超前网络产生的增益衰减,放大器增益提高a倍; G=Gc*G0; % 计算已校正系统的开环传递函数; bode(G,'r',G0,'b--');grid; % 绘制系统校正前后的伯德图; [h,r,wx,wc]=margin(G) % 计算已校正系统的幅值裕度、相角裕度及其对应的截止频率、穿越频率;
% result % 校正前系统指标 h0 = Inf r = 17.9642 wx = Inf wc = 3.0842 % 校正后系统指标 h = Inf r = 49.3369 wx = Inf wc = 4.4000
分析:
系统校正前各项指标:截止频率 ω c ′ = 3.0842 r a d / s \omega_c'=3.0842{\rm rad/s} ωc′=3.0842rad/s,相角裕度 γ ′ = 17.9642 ° \gamma'=17.9642° γ′=17.9642°,幅值裕度为 + ∞ d B +\infty{\rm dB} +∞dB;截止频率和相角裕度均低于指标要求,采用串联超前校正是合适的;
系统校正后各项指标:截止频率 ω c ′ ′ = 4.4 r a d / s \omega_c''=4.4{\rm rad/s} ωc′′=4.4rad/s,相角裕度 γ ′ ′ = 49.3369 ° ≥ 45 ° \gamma''=49.3369°≥45° γ′′=49.3369°≥45°,幅值裕度为 + ∞ d B +\infty{\rm dB} +∞dB,全部满足设计指标要求,超前网络传递函数为:
3.9417 G c ( s ) = 1 + 0.4512 s 1 + 0.1145 s 3.9417G_c(s)=\frac{1+0.4512s}{1+0.1145s} 3.9417Gc(s)=1+0.1145s1+0.4512s
【实例分析 2 2 2:复合校正】
E x a m p l e B − 6 {\rm ExampleB-6} ExampleB−6: 设系统结构图如下图所示:
-
当 r ( t ) = 0 , n ( t ) = 0.1 sin t r(t)=0,n(t)=0.1\sin{t} r(t)=0,n(t)=0.1sint时,分析扰动信号对系统输出的影响;
-
设计校正环节 G n ( s ) G_n(s) Gn(s),使系统输出不受扰动 n ( t ) n(t) n(t)的影响,并讨论校正环节的物理实现性;
解:
由图可得,扰动作用下的系统传递函数为:
Φ
n
(
s
)
=
G
2
(
s
)
[
1
+
G
1
(
s
)
G
n
(
s
)
]
1
+
G
1
(
s
)
G
2
(
s
)
\Phi_n(s)=\frac{G_2(s)[1+G_1(s)G_n(s)]}{1+G_1(s)G_2(s)}
Φn(s)=1+G1(s)G2(s)G2(s)[1+G1(s)Gn(s)]
若选择前馈补偿装置的传递函数:
G
n
(
s
)
=
−
1
G
1
(
s
)
G_n(s)=-\frac{1}{G_1(s)}
Gn(s)=−G1(s)1
必有
C
(
s
)
=
E
(
s
)
=
0
C(s)=E(s)=0
C(s)=E(s)=0,
G
n
(
s
)
G_n(s)
Gn(s)是实现了对扰动误差的全补偿;但由于
G
1
(
s
)
G_1(s)
G1(s)的分母多项式次数一般总是大于或等于分子多项式次数,
G
n
(
s
)
G_n(s)
Gn(s)在物理上往往无法准确实现,因此在实际应用时,在主要频段内采用近似全补偿,或采用稳态全补偿;
% exampleB_6.m
G1=tf([1],[2.9 1]);
G2=tf([12],[1 2.4]);
Gn=0;sysn0=(G2*(1+G1*Gn))/(1+G1*G2);% 校正前Φn(s);
t=0:0.01:20;
u=0.1*sin(t); % 扰动输入n(t)=0.1sint;
figure(1)
lsim(sysn0,u,t,0);grid % 绘制校正前扰动作用下的输出曲线;
xlabel('t');ylabel('c(t)');
Gn=-1/G1;
sysn1=(G2*(1+G1*Gn))/(1+G1*G2); % 全补偿校正后的Φn(s);
Gc=tf([1],[0.01 1]);Gn=-Gc/G1; % 构造近似补偿环节;
sysn2=(G2*(1+G1*Gn))/(1+G1*G2); % 近似全补偿校正后的Φn(s);
figure(2)
lsim(sysn2,u,t,0);grid % 绘制近似全补偿后扰动作用下的输出曲线;
xlabel('t');ylabel('c(t)');
分析:
当扰动信号 n ( t ) = 0.1 sin t n(t)=0.1\sin{t} n(t)=0.1sint单独作用时,系统稳态输出为正弦信号,其最大振幅 A m = 0.263 A_m=0.263 Am=0.263,对系统输出影响较大;
当采用对扰动的误差全补偿时,补偿环节
G
n
(
s
)
=
−
2.9
s
−
1
G_n(s)=-2.9s-1
Gn(s)=−2.9s−1;由于
G
n
(
s
)
G_n(s)
Gn(s)的分子次数高于分母次数,不便于物理实现,考虑在主要频段内近似全补偿:
G
n
(
s
)
=
−
T
1
s
+
1
T
2
s
+
1
,
T
1
>
>
T
2
G_n(s)=-\frac{T_1s+1}{T_2s+1},T_1>>T_2
Gn(s)=−T2s+1T1s+1,T1>>T2
取
G
n
(
s
)
=
−
2.9
s
+
1
0.01
s
+
1
G_n(s)=-\displaystyle\frac{2.9s+1}{0.01s+1}
Gn(s)=−0.01s+12.9s+1,扰动信号
n
(
t
)
=
0.1
sin
t
n(t)=0.1\sin{t}
n(t)=0.1sint单独作用时系统稳态输出如第二幅图所示,输出信号振幅被抑制到相当小的范围,且兼顾了物理实现性。