MATLAB基础5:控制系统的校正

这篇教程基于《自动控制原理》(第七版),介绍了如何使用MATLAB进行控制系统校正。通过两个实例分析,包括串联校正和复合校正,展示了如何设计并优化系统以满足稳定性和响应速度要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于胡寿松主编的《自动控制原理》(第七版)附录的 M A T L A B {\rm MATLAB} MATLAB控制系统简单教程,快速了解 M A T L A B {\rm MATLAB} MATLAB在控制理论的应用,下载链接: MATLAB辅助分析与设计方法基础.



5.控制系统的校正

实例分析 1 1 1:串联校正

E x a m p l e B − 5 {\rm ExampleB-5} ExampleB5 设单位负反馈系统的开环传递函数为:
G ( s ) = K s ( s + 1 ) G(s)=\frac{K}{s(s+1)} G(s)=s(s+1)K
若要求系统在单位斜坡输入信号作用时,位置输出稳态误差 e s s ( ∞ ) ≤ 0.1 r a d e_{ss}(\infty)≤0.1{\rm rad} ess()0.1rad,开环系统截止频率 ω c ′ ′ ≥ 4.4 r a d / s \omega_c''≥4.4{\rm rad/s} ωc′′4.4rad/s,相角裕度 γ ′ ′ ≥ 45 ° \gamma''≥45° γ′′45°,幅值裕度 h ′ ′ d B ≥ 10 d B h''{\rm dB}≥10{\rm dB} h′′dB10dB,设计串联无源超前网络。

设计步骤:

  1. 根据稳态误差要求,确定开环增益 K K K

  2. 利用已确定的开环增益,计算待校正系统的幅值裕度、相角裕度及其对应的截止频率、穿越频率;

  3. 根据截止频率 ω c ′ ′ \omega_c'' ωc′′的要求,计算超前网络参数 a a a T T T;为保证系统的响应速度,并充分利用网络的相角超前特性,可选择最大超前角频率等于截止频率,即 ω m = ω c ′ ′ \omega_m=\omega_c'' ωm=ωc′′,其中 a a a由下式确定:
    − L ′ ( ω c ′ ′ ) = L c ( ω m ) = 10 lg ⁡ a -L'(\omega_c'')=L_c(\omega_m)=10\lg{a} L(ωc′′)=Lc(ωm)=10lga
    再由下式确定 T T T值:
    T = 1 ω m a T=\frac{1}{\omega_m\sqrt{a}} T=ωma 1

  4. 确定无源超前网络和最大超前角 φ m \varphi_m φm
    a G c ( s ) = 1 + a T s 1 + T s , φ m = arcsin ⁡ a − 1 a + 1 aG_c(s)=\frac{1+aTs}{1+Ts},\varphi_m=\arcsin\frac{a-1}{a+1} aGc(s)=1+Ts1+aTs,φm=arcsina+1a1

  5. 验算已校正系统的幅值裕度、相角裕度及其对应的截止频率、穿越频率;若验算结果不满足指标要求,则重新选择 ω m \omega_m ωm,然后重复上述步骤;

    % exampleB_5.m
    K=1/0.1;        % 由稳态误差要求计算开环增益;
    G0=zpk([],[0 -1],K);    % 开环系统模型;
    [h0,r,wx,wc]=margin(G0) % 计算校正前的幅值裕度、相角裕度及对应的截止频率、穿越频率
    wm=4.4;         % 试取校正系统的截止频率;
    L=bode(G0,wm);
    Lwc=20*log10(L);
    a=10^(-0.1*Lwc);        % 确定超前校正网络参数a;
    T=1/(wm*sqrt(a));       % 确定超前校正网络参数T;
    phi=asin((a-1)/(a+1));  % 确定最大超前角;
    Gc=(1/a)*tf([a*T 1],[T 1]);     % 确定超前网络传递函数;
    Gc=a*Gc;        % 补偿无源超前网络产生的增益衰减,放大器增益提高a倍;
    G=Gc*G0;        % 计算已校正系统的开环传递函数;
    bode(G,'r',G0,'b--');grid;      % 绘制系统校正前后的伯德图;
    [h,r,wx,wc]=margin(G)   % 计算已校正系统的幅值裕度、相角裕度及其对应的截止频率、穿越频率;
    

    1

    % result
    % 校正前系统指标
    h0 =
       Inf
    r =
       17.9642
    wx =
       Inf
    wc =
        3.0842
    
    % 校正后系统指标
    h =
       Inf
    r =
       49.3369
    wx =
       Inf
    wc =
        4.4000
    

    分析:

    系统校正前各项指标:截止频率 ω c ′ = 3.0842 r a d / s \omega_c'=3.0842{\rm rad/s} ωc=3.0842rad/s,相角裕度 γ ′ = 17.9642 ° \gamma'=17.9642° γ=17.9642°,幅值裕度为 + ∞ d B +\infty{\rm dB} +dB;截止频率和相角裕度均低于指标要求,采用串联超前校正是合适的;

    系统校正后各项指标:截止频率 ω c ′ ′ = 4.4 r a d / s \omega_c''=4.4{\rm rad/s} ωc′′=4.4rad/s,相角裕度 γ ′ ′ = 49.3369 ° ≥ 45 ° \gamma''=49.3369°≥45° γ′′=49.3369°45°,幅值裕度为 + ∞ d B +\infty{\rm dB} +dB,全部满足设计指标要求,超前网络传递函数为:
    3.9417 G c ( s ) = 1 + 0.4512 s 1 + 0.1145 s 3.9417G_c(s)=\frac{1+0.4512s}{1+0.1145s} 3.9417Gc(s)=1+0.1145s1+0.4512s

实例分析 2 2 2:复合校正

E x a m p l e B − 6 {\rm ExampleB-6} ExampleB6 设系统结构图如下图所示:

2

  • r ( t ) = 0 , n ( t ) = 0.1 sin ⁡ t r(t)=0,n(t)=0.1\sin{t} r(t)=0n(t)=0.1sint时,分析扰动信号对系统输出的影响;

  • 设计校正环节 G n ( s ) G_n(s) Gn(s),使系统输出不受扰动 n ( t ) n(t) n(t)的影响,并讨论校正环节的物理实现性;

解:

由图可得,扰动作用下的系统传递函数为:
Φ n ( s ) = G 2 ( s ) [ 1 + G 1 ( s ) G n ( s ) ] 1 + G 1 ( s ) G 2 ( s ) \Phi_n(s)=\frac{G_2(s)[1+G_1(s)G_n(s)]}{1+G_1(s)G_2(s)} Φn(s)=1+G1(s)G2(s)G2(s)[1+G1(s)Gn(s)]
若选择前馈补偿装置的传递函数:
G n ( s ) = − 1 G 1 ( s ) G_n(s)=-\frac{1}{G_1(s)} Gn(s)=G1(s)1
必有 C ( s ) = E ( s ) = 0 C(s)=E(s)=0 C(s)=E(s)=0 G n ( s ) G_n(s) Gn(s)是实现了对扰动误差的全补偿;但由于 G 1 ( s ) G_1(s) G1(s)的分母多项式次数一般总是大于或等于分子多项式次数, G n ( s ) G_n(s) Gn(s)在物理上往往无法准确实现,因此在实际应用时,在主要频段内采用近似全补偿,或采用稳态全补偿;

% exampleB_6.m
G1=tf([1],[2.9 1]);
G2=tf([12],[1 2.4]);
Gn=0;sysn0=(G2*(1+G1*Gn))/(1+G1*G2);% 校正前Φn(s);

t=0:0.01:20;
u=0.1*sin(t);                       % 扰动输入n(t)=0.1sint;

figure(1)
lsim(sysn0,u,t,0);grid              % 绘制校正前扰动作用下的输出曲线;
xlabel('t');ylabel('c(t)');

Gn=-1/G1;
sysn1=(G2*(1+G1*Gn))/(1+G1*G2);     % 全补偿校正后的Φn(s);
Gc=tf([1],[0.01 1]);Gn=-Gc/G1;      % 构造近似补偿环节;
sysn2=(G2*(1+G1*Gn))/(1+G1*G2);     % 近似全补偿校正后的Φn(s);

figure(2)
lsim(sysn2,u,t,0);grid              % 绘制近似全补偿后扰动作用下的输出曲线;
xlabel('t');ylabel('c(t)'); 

4

5

分析:

当扰动信号 n ( t ) = 0.1 sin ⁡ t n(t)=0.1\sin{t} n(t)=0.1sint单独作用时,系统稳态输出为正弦信号,其最大振幅 A m = 0.263 A_m=0.263 Am=0.263,对系统输出影响较大;

当采用对扰动的误差全补偿时,补偿环节 G n ( s ) = − 2.9 s − 1 G_n(s)=-2.9s-1 Gn(s)=2.9s1;由于 G n ( s ) G_n(s) Gn(s)的分子次数高于分母次数,不便于物理实现,考虑在主要频段内近似全补偿:
G n ( s ) = − T 1 s + 1 T 2 s + 1 , T 1 > > T 2 G_n(s)=-\frac{T_1s+1}{T_2s+1},T_1>>T_2 Gn(s)=T2s+1T1s+1T1>>T2
G n ( s ) = − 2.9 s + 1 0.01 s + 1 G_n(s)=-\displaystyle\frac{2.9s+1}{0.01s+1} Gn(s)=0.01s+12.9s+1,扰动信号 n ( t ) = 0.1 sin ⁡ t n(t)=0.1\sin{t} n(t)=0.1sint单独作用时系统稳态输出如第二幅图所示,输出信号振幅被抑制到相当小的范围,且兼顾了物理实现性。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FUXI_Willard

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值