Chapter1.3:控制系统的仿真介绍

本文详细介绍Matlab在自动控制领域的应用,涉及控制系统仿真概念、计算机仿真分类,着重讲解MATLAB/Simulink在控制系统设计中的关键步骤,包括建模、仿真和工具箱使用。特别关注物理仿真与数学仿真、MATLAB命令行与Simulink图形界面的对比,以及控制相关工具箱如控制系统工具箱的功能与实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

该系列博客主要讲述Matlab软件在自动控制方面的应用,如无自动控制理论基础,请先学习自动控制系列博文,该系列博客不再详细讲解自动控制理论知识。
自动控制理论基础相关链接:https://blog.csdn.net/qq_39032096/category_10287468.html?spm=1001.2014.3001.5482
博客参考书籍:《MATLAB/Simulink与控制系统仿真》。



3.控制系统的仿真介绍
3.1 控制系统仿真基本概念
  1. 计算机仿真基本概念

    • 仿真的基本思想:利用物理的或数学的模型来类比模仿现实过程,以寻求对真实过程的认识,所遵循的基本原则是相似性原理;

    • 计算机仿真是基于所建立的系统仿真模型,利用计算机对系统进行分析、研究的技术与方法;

    • 模型

      模型是对现实系统有关结构信息和行为的某种形式的描述,是对系统特征与变化规律的一种定量抽象,是人们认识事物的一种手段或工具;

      模型分类:

      • 物理模型:指不以人的意志为转移的客观存在的实体,如:飞行器研制中的飞行模型、船舶制造中的船舶模型等;
      • 数学模型:指从一定的功能或结构上进行相似,用数学的方法来再现原型的功能或结构特征;
      • 仿真模型:指根据系统的数学模型,用仿真语言转化为计算机可以实现的模型;
    • 仿真分类

      • 按模型分类:
        • 物理仿真:采用物理模型,有实物介入,具有效果逼真、精度高等优点,但造价高或耗时长,大多在特殊场合下采用,具有实时、在线的特点;
        • 数学仿真:采用数学模型,在计算机上进行,具有非实时、离线的特点,经济、快速、实用;
      • 按计算机类型分类:
        • 模拟仿真:采用数学模型,在模拟计算机上进行的仿真实验;特点是描述连续物理系统的动态过程比较自然、逼真,具有仿真速度快、失真小、结果可靠的优点,但受元器件性能影响,仿真精度较低,对计算机控制系统的仿真较困难,自动化程度低;
        • 数字仿真:采用数学模型,在数字计算机上借助数值计算方法所进行的仿真实验,特点是计算与仿真的精度较高;
        • 混合仿真:结合了模拟仿真与数字仿真的技术与特点;
        • 现代计算机仿真:采用先进的微型计算机,基于专用的仿真软件、仿真语言来实现,其数值计算功能强大、易学易用;
    • 仿真应用

      • 航空与航天工业

        飞行器设计中的三级仿真体系,半实物仿真,实物仿真或模拟飞行实验,飞行员及宇航员训练用飞行仿真模拟器等;

      • 电力工业

        电力系统动态模型实验,电力系统负荷分配、瞬态稳定性,及最优潮流控制,电站操作人员培训模拟系统等;

      • 原子能工业

        模拟核反应堆,核电站仿真器,用来训练操作人员及研究异常故障的排除处理等;

      • 石油、化工及冶金工业

      • 非工程领域

        医学、社会学、宏观经济和商业策略的研究等;

    • 仿真技术应用意义

      • 经济:大型、复杂系统直接实验的费用十分昂贵;
      • 安全:某些系统,如:载人飞行器、核电装置等,直接实验往往会有很大危险,采用仿真实验可以有效降低危险程度,对系统的研究起到保障作用;
      • 快捷:提高设计效率,如:电路设计、服饰设计等;
      • 具有优化设计和预测的特殊功能:对一些真实系统进行结构和参数的优化设计是非常困难的,仿真可以发挥特殊的优化设计功能;
  2. 控制系统仿真

    控制系统仿真是以控制系统模型为基础,采用数学模型代替实际控制系统,以计算机为工具,对控制系统进行实验、分析、评估及预测研究的一种技术与方法;

  3. 控制系统计算机基本过程

  4. 控制系统仿真包括:问题描述、模型建立、仿真实验、结果分析,流程图如下所示:

    1

    • 建立数学模型。

      控制系统模型是指描述控制系统输入、输出变量及内部各变量间关系的数学表达式,分为静态模型和动态模型,静态模型描述的是控制系统变量之间的静态关系,动态模型描述的是控制系统变量之间的动态关系;

    • 建立仿真模型。

      由于计算机数值计算方法的限制,有些数学模型不能直接用于数值计算,原始的数学模型必须转换为能够进行系统仿真的数学模型;

    • 编写仿真程序。

      常用的数值仿真编程语言:C、FORTRAN等,还有MATLAB/Simulink;

    • 进行仿真实验并分析实验结果。

      通过对仿真结果的分析来对仿真模型与仿真程序进行检验和修改,如此反复,直到达到满意的实验效果为止;

3.2 MATLAB/Simulink下的控制系统仿真
  1. 控制系统的MATLAB/Simulink仿真有两种途径
    1. 在MATLAB命令行窗口下,运行M文件,调用指令和各种用于系统仿真的函数,进行系统仿真;
    2. 直接在Simulink窗口上进行面向系统结构方框图的系统仿真;
  2. MATLAB适合控制系统仿真的特点
    1. 强大的运算功能;
    2. 特殊功能的Toolbox工具箱;
    3. 高效的编程效率;
    4. 简单易学的编程语言;
    5. 方便友好的编程环境;
  3. Simulink进行系统仿真的步骤:
    1. 启动Simulink,进入Simulink窗口;
    2. 在Simulink窗口下,借助Simulink模块库,创建系统框图模型并调整模块参数;
    3. 设置仿真参数后,启动仿真;
    4. 输出仿真结果;
3.3 MATLAB中控制相关的工具箱

MATLAB与控制相关的6个工具箱:控制系统工具箱(Control System Toolbox)、系统辨识工具箱(System Identification Toolbox)、模型预测控制工具箱(Model Predictive Control Toolbox)、鲁棒控制工具箱(Robust Control Toolbox)、神经网络工具箱(Neural Network Toolbox)、模糊逻辑工具箱(Fuzzy Logic Toolbox);

  1. 控制系统工具箱:控制系统工具箱可用于前馈和反馈控制系统建模、分析、设计,提供经典和现代的控制系统设计方法,包括:根轨迹、极点配置、LQG设计等;控制系统工具箱主要功能:
    1. 线性系统的传递函数、状态空间、零极点增益和频率响应模型;
    2. 线性模型的串联、并联、反馈连接和一般框图连接;
    3. 用于分析稳定性和性能指标的阶跃响应、奈奎斯特图等;
    4. 根轨迹图、波特图、LQR、LQG及其他经典工具和状态空间控制系统设计方法;
    5. 自动PID控制器调节;
    6. 模型表示方式转换、连续时间模型离散化和高阶系统的低阶近似;
    7. 针对精确度和性能而优化的LAPACK和SLICOT算法;
  2. 系统辨识工具箱
    1. 控制系统设计;
    2. 信号处理;
    3. 时序分析;
    4. 振动分析;
  3. 模型预测控制工具箱
    1. 模型预估计控制器的设计和仿真;
    2. 生成内置的线性对象模型;
    3. 模型预测控制器的设计和仿真;
  4. 鲁棒控制工具箱
    1. LQG/LTR最佳化控制的合成;
    2. 多变量的频率响应;
    3. H2最佳化控制合成;
    4. 高阶模型的简化;
    5. 奇异值的模型简化;
    6. 可对频谱进行因式分解及建立模型;
  5. 神经网络工具箱
    1. BP、Hopfield、Kohnen、自组织、径向基函数等网络;
    2. 竞争、线性、Sigmoidal等传递函数;
    3. 前馈、递归等网络结构;
    4. 性能分析;
  6. 模糊逻辑工具箱
    1. 自适应神经–模糊学习;
    2. 模糊聚类;
    3. Sugeno推理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FUXI_Willard

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值