Torch学习 自动求梯度

本文介绍了PyTorch中的autograd包如何实现自动求梯度。通过设置Tensor的requires_grad=True,可以追踪计算过程,使用.backward()进行反向传播。在不需要梯度追踪时,可以使用.detach()或with torch.no_grad()。文章还展示了如何处理非标量输出的反向传播,并给出了中断梯度追踪的例子。
摘要由CSDN通过智能技术生成

自动求梯度

PyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播。
Tensor是这个包的核心类,如果将其属性.requires_grad设置为True,它将开始追踪(track)在其上的所有操作(这样就可以利用链式法则进行梯度传播了)。完成计算后,可以调用.backward()来完成所有梯度计算。此Tensor的梯度将累积到.grad属性中。

在y.backward()时,如果y是标量,则不需要为backward()传入任何参数;否则,需要传入一个与y同形的Tensor

如果不想要被继续追踪,可以调用.detach()将其从追踪记录中分离出来,这样就可以防止将来的计算被追踪,这样梯度就传不过去了。此外,还可以用with torch.no_grad()将不想被追踪的操作代码块包裹起来,这种方法在评估模型的时候很常用,因为在评估模型时,我们并不需要计算可训练参数(requires_grad=True)的梯度。

Function是另外一个很重要的类。Tensor和Function互相结合就可以构建一个记录有整个计算过程的有向无环图(DAG)。每个Tensor都有一个.grad_fn属性,该属性即创建该Tensor的Function, 就是说该Tensor是不是通过某些运算得到的,若是,则grad_fn返回一个与这些运算相关的对象,否则是None。

import torch#创建一个Tensor并设置requires_grad=True:
x=torch.ones(2,2,requires_grad=True)
print(x)
print(x.grad_fn)
tensor([[1., 1.],
        [1., 1.]], requires_grad=True)
None
y=x+2
print(y)
print(y.grad_fn)
tensor([[3., 3.],
        [3., 3.]], grad_fn=<AddBackward0>)
<AddBackward0 object at 0x00000281F8ECF280>
注意x是直接创建的,所以它没有grad_fn, 而y是通过一个加法操作创建的,所以它有一个为的grad_fn。

像x这种直接创建的称为叶子节点,叶子节点对应的grad_fn是Noneprint(x.is_leaf,y.is_leaf)
True False
z=y*y*3
out=z.mean()
print(z,out)
out.backward()
tensor([[27., 27.],
        [27., 27.]], grad_fn=<MulBackward0>) tensor(27., grad_fn=<MeanBackward0>)
​
通过.requires_grad_()来用in-place的方式改变requires_grad属性

a=torch.randn(2,2)#缺失情况下默认requires_grad=False
a=((a*3)/(a-1))
print(a.requires_grad)
a.requires_grad_(True)
print(a.requires_grad)
b=(a*a).sum()
print(b.grad_fn)
False
True
<SumBackward0 object at 0x00000281F90E80A0>
​
​
print(x.grad)
None
x.grad
out2=x.sum()
out2.backward()
print(x.grad)
out3=x.sum()
x.grad.data.zero_()
out3.backward()
print(x.grad)
tensor([[2., 2.],
        [2., 2.]])
tensor([[1., 1.],
        [1., 1.]])
不允许张量对张量求导,只允许标量对张量求导,求导结果是和自变量同形的张量所以必要时我们要把张量通过将所有张量的元素加权求和的方式转换为标量,举个例子,假设y由自变量x计算而来,w是和y同形的张量,则y.backward(w)的含义是:先计算l = torch.sum(y * w),则l是个标量,然后求l对自变量x的导数。

x=torch.tensor([1.0,2.0,3.0,4.0],requires_grad=True)
y=2*x
z=y.view(2,2)
print(z)
tensor([[2., 4.],
        [6., 8.]], grad_fn=<ViewBackward>)
的张量
v=torch.tensor([[1.0,0.1],[0.01,0.001]],dtype=torch.float)
z.backward(v)
print(x.grad)
#现在 z 不是一个标量,所以在调用backward时需要传入一个和z同形的权重向量进行加权求和得到一个标量
#x.grad是和x同形的张量
tensor([2.0000, 0.2000, 0.0200, 0.0020])
中断梯度追踪的例子
x=torch.tensor(1.0,requires_grad=True)#中断梯度追踪的例子
y1=x**2
with torch.no_grad():
    y2=x**3
y3=y1+y2
print(x.requires_grad)
print(y1,y1.requires_grad)
print(y2,y2.requires_grad)
print(y3,y3.requires_grad)
True
tensor(1., grad_fn=<PowBackward0>) True
tensor(1.) False
tensor(2., grad_fn=<AddBackward0>) True
y3.backward()
print(x.grad)
tensor(2.)
为什么是2呢?𝑦3=𝑦1+𝑦2=𝑥2+𝑥3,当 时

不应该是5吗?事实上,由于 的定义是被torch.no_grad():包裹的,所以与 有关的梯度是不会回传的,只有与 有关的梯度才会回传,即 对 的梯度。

上面提到,y2.requires_grad=False,所以不能调用 y2.backward(),会报错:

如果我们想要修改tensor的数值,但是又不希望被autograd记录(即不会影响反向传播),那么我么可以对tensor.data进行操作

  
x=torch.ones(1,requires_grad=True)
print(x.data)#还是一个Tensor
print(x.data.requires_grad) # 但是已经是独立于计算图之外
y=2*x
x.data*=100 # 只改变了值,不会记录在计算图,所以不会影响梯度传播
y.backward()
print(x)  # 更改data的值也会影响tensor的值
print(x.grad)
tensor([1.])
False
tensor([100.], requires_grad=True)
tensor([2.])
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值