Claude 3模型介绍与实测(对比GPT4)

Claude公司发布了Claude3模型家族,包括Haiku、Sonnet和Opus,分别在速度、平衡和智能方面表现出色。Opus尤其强大,Sonnet性价比高,而Haiku快速且低成本。对比GPT4,Claude3在视觉能力上表现稳定。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图片

Claude 宣布,其最新力作——Claude 3 模型家族正式亮相。这一系列包括 Claude 3 Haiku、Claude 3 Sonnet 和 Claude 3 Opus 三款模型,各具特色,旨在为用户提供更智能、更快速、更高效的选择。

  • 现已上线:Opus 和 Sonnet 模型,在 claude.ai 及 Claude API 上对全球 159 个国家开放。

  • 即将推出:Haiku 模型,敬请期待。

图片

主要特点

图片

  • 新高度:Opus 模型在 AI 评估基准上表现突出,处理复杂任务如同轻松闲庭信步。

  • 多语言:Claude 3 系列能够流畅地处理西班牙语、日语、法语等多种语言的对话和文本分析。

突破性能力
  • 即时反应:Claude 3 系列支持实时响应,特别是 Haiku 模型,速度快、成本低。

  • 视觉识别:这些模型能够识别并处理多种视觉格式,如照片、图表和技术图纸。

    图片

  • 减少错误拒绝:Claude 3 模型在理解边缘性提示方面取得显著进步,减少不必要的拒绝回答。

    图片

  • 准确率提升:在处理复杂问题时,这些模型表现出更高的准确性,减少错误信息的产生。

    图片

  • 长期记忆:最初提供 200K token 的上下文窗口,能够有效处理长篇输入,Opus 模型在信息回忆方面表现尤为出色。

    图片

Claude 3 成本&性能

以下是对 Claude 三款模型性能与成本的直观介绍,旨在为不同需求的用户提供清晰的选择指南。

图片

Opus:智能
  • 特点:Opus 模型是目前市场上最智能的模型,擅长处理极其复杂的任务。它能够流畅应对开放式问题和全新场景,显示出类似人类的高度理解能力。

  • 成本:输入 $15/百万 token,输出 $75/百万 token。

  • 上下文窗口:200K token(对于特定用途,1M token 可用,详情请咨询)。

  • 应用场景:包括任务自动化、研发、策略分析等。

  • 优势:在智能层面,超越其他所有模型。

Sonnet:平衡
  • 特点:Sonnet 模型在智能与速度之间找到了完美的平衡点,特别适合承担企业级任务,性价比高。

  • 成本:输入 $3/百万 token,输出 $15/百万 token。

  • 上下文窗口:200K token。

  • 应用场景:适用于数据处理、销售支持、提升工作效率等任务。

  • 优势:与同等智能模型相比,更经济实惠,适合大规模部署。

Haiku:速度
  • 特点:Haiku 模型反应迅速,是所有模型中最快的,特别适合需要即时反应的简单任务。

  • 成本:输入 $0.25/百万 token,输出 $1.25/百万 token。

  • 上下文窗口:200K token。

  • 应用场景:客户服务、内容审核、优化物流等。

  • 优势:在速度和成本效益上领先,为用户提供高效的 AI 体验。

设计理念其及他
  • 负责任的 AI:Claude 3 系列在设计上注重安全和可靠,通过持续跟踪和缓解风险,确保了模型的稳定运行。

  • 持续改进:Claude 公司致力于减少模型偏见,提高模型的公正性和中立性。

  • 安全等级:根据负责任扩展政策,Claude 3 被评定为 AI 安全等级 2(ASL-2),展现了其在安全方面的可靠性。

与GPT4 对比

目前简单尝试了一下,没想到虽然可以使用但是只有几免费的机会。

图片

我们先看看最新的数据集,依然停留才 2023 年 8 月:

图片

GPT4 以其多模态功能,成为了许多用户不可或缺的工具之一。

近期,Claude3亦升级了其视觉能力,新增了直接处理图像的功能。

官方发布的数据表明,Claude3在视觉能力上与GPT4基本持平。

图片

简单看下测试的结果,先是视觉能力,这里也可能是大全表达的不清楚?然后换了个说法就好了。:

图片

非常出色的完成我的任务,来看看 GPT4 的表现:

图片

再看看打开这个代码之后的效果:

图片

至少主体看没啥大的问题,这里GPT4 略胜,也可能是大全表达的不清楚。

我们再来看一个图片理解能力的例子:

图片

接着是 GPT4 的表现:

图片

大家看到回答了吗?我倒是更喜欢 GPT4 的回答,至少这个回答是我心中的答案。

因为只有三次测试机会,所有也只能测试到这里了😂。

这里我们可以再看看其他的测试,大家感受一下:

图片

图片

以上就是本次分享的内容,感谢大家支持。您的关注、点赞、收藏是我创作的动力。

万水千山总是情,点个 👍 行不行。

### DeepSeek 不同模型间的对比区别 #### 1. 架构设计上的差异 DeepSeek-V3采用了混合专家(MoE)架构并结合了强化学习机制[^2]。这种独特的结构允许模型根据不同输入动态调整内部处理路径,使得资源利用更加高效合理。 相比之下,GPT-4依赖于传统的Transformer密集连接方式构建;而Claude则更侧重于优化推理效率,尽管具体细节并未完全公开披露. 对于Gemini而言,其特色在于能够处理多种类型的媒体信息(如文本、图片和声音),这表明它具备更强的数据兼容性和应用场景多样性. #### 2. 参数规模的区别 在参数数量上,DeepSeek-V3拥有高达6710亿个总参数,在实际运行过程中会根据任务需求激活约370亿个有效工作单元参计算操作. 这样的设定既保证了一定程度上的灵活性又不失强大的表达能力. 至于竞争对手们: - OpenAI旗下的GPT系列最新版本(GPT-4)已知的最大配置为1750亿参数; - Google推出的Gemini虽然可以跨平台运作却并没有给出确切数值说明; - 同样来自Anthropic公司的Claude也没有公布具体的量化指标. #### 3. 训练开销的不同之处 从经济成本角度来看,训练这样一个大型神经网络所需投入的资金数额巨大.据估算完成一次完整的DeepSeek-V3迭代大约耗费557.6万美元,远低于某些竞品所宣称的成本水平(例如OpenAI声称每轮更新要价超过一亿美元). 值得注意的是上述费用仅作为参考依据之一,因为各家公司可能采取不同的会计准则和技术路线导致最终结算存在较大波动范围. ```python # Python伪代码展示如何比较两个模型的性能差距 def compare_model_performance(model_a_cost, model_b_cost): ratio = (model_a_cost / model_b_cost) * 100 print(f"The cost of training Model A is {ratio:.2f}% relative to Model B.") compare_model_performance(557_6000, 100_000_000) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值