按照需要体现的内容确定合类型的视图。
!!!这个网站很不错,可以看到各种视图的实例介绍,主要知道各种视图适合什么情况:为 热图 选择 函数 - Minitab!!!
python 画图大全: seaborn.objects.Dot — seaborn 0.13.2 documentation
这个可以看一下,找画图代码的时候可以看看:https://www.cnblogs.com/caiyishuai/p/11184166.html相当于怎么绘制视图。
画的时候可以参考下seaborn对于某个绘图方法的官方指导文件
hist 直方图(histogram)
kde 核密度曲线(kernel density estimation, 核密度估计),
scatter 散点图,
reg (regression 回归线相关的图)
简单介绍:
下面的图片来自网络:
再看下两个关于数据可视化的收藏:
自己的一些总结:
3个变量之间的关系:3D视图,也可以用气泡图。
3D散点图:适合分析多变量之间的关系。既为3D,说明是要显示3个变量之间的关系。
首先,3D空间中,只要给出三个坐标值,就能确定一个点。
情形:
比如有下xy坐标,还有一个是误差值,这就相当于有三个变量,可以通过绘制3D散点图来看xy在什么情况下坐标最大,或者可以看到误差(Z轴)的取值和xy坐标有什么关系。
进一步,如果想做的更生动一些,还可以在图出来之后手动地在图上标注更丰富的信息。
总结:三个变量之间的关系:考虑3D散点图或者3D曲面图,还可以用气泡图,气泡大小表示第三个变量的值。
气泡图甚至好像可以显示四个变量,气泡的颜色也算进去。(那这么说3D视图也能显示四个量,用点的颜色表示也行)
比较类:基本上是看数值大小,
- 单纯的比较大小,可以用柱状图或者条形图(当参与比较的种类较多的时候,可以用条形图(就是柱状图旋转过来)
- 还有比较柱状图,也就是蝴蝶图,使用在对于不同比较对象的某两个方面进行比较的情况。
比如有两个参与比较的对象,它们各自有两种相同的属性,就可以用蝴蝶图(对比条形图)进行比较。
边际图(有点像这篇文章python数据分析常用图大集合_python数据分析画图-CSDN博客中说到的二元变量分布)
相当于在画出xy分布的基础上,再图框的边界上单独看一下xy的分布情况
这种图在python中叫搜sns.jointplot
数据的颜色:
注意给数据加上颜色,有的时候就能反映出一些趋势,但是这个样本量要注意是比较大的。
注意,数据的颜色有时候也能作为一个变量进行表示!
气泡图和热力图的侧重点的区别:
气泡图主要是用于显示三个变量之间的关系,而且能够看出一定的趋势。
热力图感觉更多是看一种矩阵数据(有行有列)的分布情况,比如说哪些地方会有较大值,较小的值,而且热力图中的色块大小都是一样大的,更多的是看一种数值的分布情况。而且用于热力图展示的数据应当是规律的,是一些确定的一定会存在的数值,比如:固定的几个城市的在1-6月份的温度情况,或者是固定的三个国家中20-50岁年龄段人群的睡眠时间,就有点类似于矩阵数据,行列有明确的意义。
气泡图主要是用于三个变量的比较,能够看出数据的一些变化趋势的,而且用气泡图表示的数据并不要求一定要存在,只是原始的数据就可以了。
不同样本的数据叠加画在一张图中,调整下透明度,也能反映更多的信息。
如果是做相关性图,用df.corr()可以直接得到数据间的相关性。
这种叫做密度图,纵坐标表示密度