大数定律与中心极限定理

切比雪夫不等式和依概率收敛

切比雪夫不等式

设 随 机 变 量 X 的 数 学 期 望 E ( X ) 和 方 差 D ( X ) 存 在 , 对 于 任 意 的 ε > 0 , 设随机变量X的数学期望E(X)和方差D(X)存在,对于任意的\varepsilon >0, XE(X)D(X)ε>0 总 有 总有
P { ∣ X − E ( X ) ∣ ⩾ ε } ⩽ D ( X ) ε 2 , 或 者 P { ∣ X − E ( X ) ∣ < ε } ⩾ 1 − D ( X ) ε 2 P\left \{ |X-E(X)|\geqslant \varepsilon \right \}\leqslant\frac{D(X)}{\varepsilon ^2},或者P\left \{ |X-E(X)|<\varepsilon \right \}\geqslant 1-\frac{D(X)}{\varepsilon ^2} P{XE(X)ε}ε2D(X),P{XE(X)<ε}1ε2D(X)

依概率收敛

设 X 1 X 2 , X 3 , . . . . , X n , 是 一 个 随 机 序 列 , A 是 一 个 常 数 , 如 果 对 于 设X_1X_2,X_3,....,X_n,是一个随机序列,A是一个常数,如果对于 X1X2,X3,....,Xn,A
任 意 的 ε > 0 有 , 任意的\varepsilon >0有, ε>0 lim ⁡ n → ∞ P { ∣ X n − A ∣ < ε } = 1 , \lim\limits_{n\to\infty}P\left \{ |X_n-A|<\varepsilon \right\}=1, nlimP{XnA<ε}=1 即 X n 落 在 以 A 为 中 心 ε 为 半 径 的 邻 域 里 面 , X n → p A ( X n 依 概 率 P 收 敛 于 A ) 即X_n落在以A为中心\varepsilon为半径的邻域里面,X_n\overset{p}{\rightarrow}A(X_n依概率P收敛于A) XnAεXnpA(XnPA)

大数定律

切比雪夫大数定律

设 X 1 X 2 , X 3 , . . . . , X n , 是 两 两 不 相 关 的 随 机 变 量 序 列 , 其 期 望 E ( X i ) 设X_1X_2,X_3,....,X_n,是两两不相关的随机变量序列,其期望E(X_i) X1X2,X3,....,Xn,E(Xi)
方 差 D ( X i ) 均 存 在 , 且 存 在 常 数 C , 使 得 D ( X i ) ⩽ C , 则 对 于 任 意 的 方差D(X_i)均存在,且存在常数C,使得D(X_i)\leqslant C,则对于任意的 D(Xi)C使D(Xi)C
ε > 0 , 有 \varepsilon >0,有 ε>0
= lim ⁡ n → ∞ P { ∣ 1 n ∑ i = 1 n X i − 1 n ∑ i = 1 n E ( X i ) ∣ < ε } =\lim\limits_{n\to\infty}P\left \{ |\frac{1}{n}\sum_{i=1}^{n}X_{i}-\frac{1}{n}\sum_{i=1}^{n}E(X_{i})|<\varepsilon\right\} =nlimP{n1i=1nXin1i=1nE(Xi)<ε}
= lim ⁡ n → ∞ P { ∣ X ‾ − E ( X ‾ ) ∣ < ε } = 1 , =\lim\limits_{n\to\infty}P\left \{ |\overline{X}-E(\overline{X})|<\varepsilon\right\}=1, =nlimP{XE(X)<ε}=1
即 随 机 变 量 的 算 数 平 均 值 依 概 率 收 敛 于 它 的 数 学 期 望 即随机变量的算数平均值依概率收敛于它的数学期望

伯努力大数定律

设 随 机 变 量 X n 设随机变量X_n Xn~ B ( n , p ) , n = 1 , 2 , . . . . , 则 对 于 任 意 的 ε > 0 , 有 B(n,p),n=1,2,....,则对于任意的\varepsilon >0,有 B(n,p)n=1,2,....,ε>0
= lim ⁡ n → ∞ P { ∣ X ‾ − E ( X ‾ ) ∣ < ε } =\lim\limits_{n\to\infty}P\left \{ |\overline{X}-E(\overline{X})|<\varepsilon\right\} =nlimP{XE(X)<ε}
= lim ⁡ n → ∞ P { ∣ X n − n p ∣ < ε } =\lim\limits_{n\to\infty}P\left \{ |X_n-np|<\varepsilon\right\} =nlimP{Xnnp<ε}
= lim ⁡ n → ∞ P { ∣ X n n − p ∣ < ε } = 1 =\lim\limits_{n\to\infty}P\left \{ |\frac{X_n}{n}-p|< \varepsilon \right \}=1 =nlimP{nXnp<ε}=1

辛钦大数定律

设 X 1 X 2 , X 3 , . . . . , X n , 独 立 同 分 布 , 其 期 望 E ( X i ) = μ , i = 1 , 2 , . . . . , 设X_1X_2,X_3,....,X_n,独立同分布,其期望E(X_i)=\mu,i=1,2,...., X1X2,X3,....,Xn,E(Xi)=μ,i=1,2,...., 则 对 于 任 意 的 ε > 0 , 有 则对于任意的\varepsilon >0,有 ε>0
= lim ⁡ n → ∞ P { ∣ X ‾ − E ( X ‾ ) ∣ < ε } =\lim\limits_{n\to\infty}P\left \{ |\overline{X}-E(\overline{X})|<\varepsilon\right\} =nlimP{XE(X)<ε}
= lim ⁡ n → ∞ P { ∣ 1 n ∑ i = 1 n X i − μ ∣ < ε } = 1 =\lim\limits_{n\to\infty}P\left \{ |\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu|<\varepsilon\right\}=1 =nlimP{n1i=1nXiμ<ε}=1

中心极限定理

大 量 的 独 立 同 分 布 的 随 机 变 量 X 1 X 2 , X 3 , . . . . , X n , 近 似 服 从 正 态 分 布 大量的独立同分布的随机变量X_1X_2,X_3,....,X_n,近似服从正态分布 X1X2,X3,....,Xn,

拉普拉斯中心极限定理

设 随 机 变 量 X n 设随机变量X_n Xn~ B ( n , p ) , 则 对 于 任 意 实 数 x , 有 B(n,p),则对于任意实数x,有 B(n,p)x
= lim ⁡ n → ∞ P { ∣ X ‾ − E ( X ‾ ) D ( X ‾ ) ∣ ⩽ x } ( x − μ σ ) 为 正 态 分 布 标 准 化 =\lim\limits_{n\to\infty}P\left \{ \vert \frac{\overline{X}-E(\overline{X})}{\sqrt{D(\overline{X})}}\vert \leqslant x\right\}(\frac{x-\mu}{\sigma})为正态分布标准化 =nlimP{D(X) XE(X)x}(σxμ)
= lim ⁡ n → ∞ P { ∣ X n − n p n p ( 1 − p ) ∣ ⩽ x } =\lim\limits_{n\to\infty}P\left \{ \vert \frac{X_n-np}{\sqrt{np(1-p)}}\vert\leqslant x\right\} =nlimP{np(1p) Xnnpx}
= Φ ( x ) =\Phi(x) =Φ(x)

林德伯格中心极限定理

设 独 立 同 分 布 的 随 机 变 量 X 1 X 2 , X 3 , . . . . , X n , E ( X n ) = μ , D ( X n ) = σ 2 , 设独立同分布的随机变量X_1X_2,X_3,....,X_n,E(X_n)=\mu,D(X_n)=\sigma^2, X1X2,X3,....,Xn,E(Xn)=μD(Xn)=σ2
其 中 n = 1 , 2 , . . . . , 则 对 于 任 意 的 实 数 x , 有 其中n=1,2,....,则对于任意的实数x,有 n=1,2,....,x
= lim ⁡ n → ∞ P { ∣ X ‾ − E ( X ‾ ) D ( X ‾ ) ∣ ⩽ x } ( x − μ σ ) 为 正 态 分 布 标 准 化 =\lim\limits_{n\to\infty}P\left \{ \vert \frac{\overline{X}-E(\overline{X})}{\sqrt{D(\overline{X})}}\vert \leqslant x\right\}(\frac{x-\mu}{\sigma})为正态分布标准化 =nlimP{D(X) XE(X)x}(σxμ)
= lim ⁡ n → ∞ P { ∣ 1 n ∑ i = 1 n X i − μ σ 2 n ∣ ⩽ x } =\lim\limits_{n\to\infty}P\left \{ \vert \frac{\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu}{\sqrt{\frac{\sigma^{2}}{n}}}\vert \leqslant x\right\} =nlimP{nσ2 n1i=1nXiμx}
= lim ⁡ n → ∞ P { ∣ ∑ i = 1 n X i − n μ n σ ∣ ⩽ x } =\lim\limits_{n\to\infty}P\left \{ \vert \frac{\sum_{i=1}^{n}X_{i}-n\mu}{\sqrt{n}\sigma}\vert \leqslant x\right\} =nlimP{n σi=1nXinμx}
= Φ ( x ) =\Phi(x) =Φ(x)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值