图像知识汇总

# 按照比例将图片切割
image = cv2.imread(fname1)
# 获取图片长宽高
sp = image.shape
sz1 = sp[0]  # height(rows) of image
sz2 = sp[1]  # width(colums) of imag
# 取下部分四分之一
# int((3 / 4)纵开始,sz1纵结束
# 0 横开始,sz2横结束
image = image[int((3 / 4) * sz1):sz1, 0:sz2]
# 图片显示,停留一段时间
cv2.imshow("sss", image)
cv2.waitKey(0)
-----------------------------------------------------
# 字节流与numpy之间的转换
# 图片转为字节流
import cv2
import numpy as np
img_src = cv2.imread("E:/result_data/1.jpg")
img_byte = img_src.tobytes()
# 字节流转为图片
buff_array = np.fromstring(image_stream, np.uint8)
img = cv2.imdecode(buff_array, cv2.IMREAD_COLOR)
---------------------------------------------------------
# 当图像数据为xmin, ymin, w, h = bbox时,进行切割
 cname, bbox, score = dt['category'], dt['bbox'], dt['score']
 # xmin, ymin, w, h = bbox
 # 先纵坐标,再横坐标
 if score > 0.5:  # 判断置信度
     image = img[int(bbox[1]):int(bbox[1] + bbox[3]), int(bbox[0]):int(bbox[0] + bbox[2])]
     buff_array = image.tobytes()
     print(buff_array)
     cv2.imshow("sss", image)
     cv2.waitKey(0)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值