Chat-REC、InstructRec(LLM大模型用于推荐系统)

文章探讨了LLM(大型语言模型)如何增强推荐系统,提出Chat-REC方法,利用ChatGPT进行交互式和可解释的推荐,解决了冷启动和跨域推荐问题。同时介绍了InstructRec,通过指令调优的LLM实现用户偏好和意图的理解,应用于多种推荐任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当众多chat-xxx和xxxGPT喷涌而出的时候,博主就在等它被做到推荐系统的这一天。本篇博文将简要看看一些文章的具体做法。

Chat-REC: Towards Interactive and Explainable LLMs-Augmented Recommender System
先上地址,

  • https://arxiv.org/abs/2303.14524

LLM+推荐系统的结合点在哪?
虽然大型语言模型LLM已经证明了它们用于解决各种应用任务的巨大潜力,但它和推荐系统的结合点在哪?

  • 推荐系统旨在根据用户的偏好和行为向用户推荐项目。传统上,这些系统都依赖于用户数据,如点击流和购买历史等等。
  • NLP在扩大推荐系统用户数据的范围方面是有价值的。比如NLP技术可以用于分析用户生成的内容,如评论和社交媒体帖子,以深入了解用户的偏好和兴趣,提高整体用户体验和参与度。

然而,传统的推荐系统仍然面临着巨大的挑战,如缺少交互性、可解释性,缺乏反馈机制,以及冷启动和跨域推荐等长期问题。但LLM的出现为这些挑战提供了一个很有前途的解决方案。

  • LLM可以生成更自然和可解释的建议,从而可以解决冷启动问题,并执行跨领域推荐。
  • LLM具有更强的交互性和反馈机制,完全可以增强整体用户体验。
  • 通过利用海量参数所承载的内部知识,LLM可以依靠外部检索器以进一步提高推荐系统的性能 。

推荐系统任务被制定为基于提示的自然语言任务,其中user-item信息和相应的特征与个性化的提示模板集成作为模型输入。然而,在目前的研究中,LLM仍然作为模型的一部分需要参与训练(不过博主个人观点并不觉得这是比较大的缺点,利用通用模型的能力+小部分参数训练到垂直领域效果一定更有保证,更多可以参考博主之前的文章门)。

在这篇文章中,作者介绍了一种新的方法来做会话推荐系统(从而能与LLM更紧密的结合),它具有交互式和可解释的能力,即LLMs 增强传统推荐的范式 Chat-Rec(ChatGPT Augmented Recommender System),不需要训练(本质就是直接拿chatGPT做接口,设计预/后处理),而是只依赖于上下文学习,从而产生更有效的结果。

  • 使用LLM增强的推荐系统&#x
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值