本篇博文继续整理LLM在搜索推荐领域的应用,往期文章请往博主主页查看更多。
Precise Zero-Shot Dense Retrieval without Relevance Labels
这篇文章主要做zero-shot场景下的稠密检索,通过借助LLM的力量不需要Relevance Labels,开箱即用。作者提出Hypothetical Document Embeddings (HyDE)方法,即“假设”文档嵌入。具体的做法是通过GPT生成虚构的文档,并使用无监督检索器对其进行编码,并在其嵌入空间中进行搜索,从而不需要任何人工标注数据。
s i m ( q , d ) = < e n c q ( q ) , e n c d ( d ) = < v q , v d