Sallen-Key二阶低通滤波器——设计问题浅析

文章探讨了Sallen-Key二阶低通滤波器的结构和设计问题,特别是在截止频率计算与实际仿真结果的差异。作者通过调整电阻电容值发现,当Ra=Rb,Ca=Cb时,-3dB衰减频率并不等于理论计算的截止频率。通过调整Ca和Cb的比例,可以更准确地控制滤波器在10kHz处达到-3dB衰减。文章强调了滤波器设计的复杂性和电容选择对调谐频率的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

这两天接了个简单的活,关于设计一个Sallen-Key二阶低通滤波器,有一些体会。


1 Sallen-Key二阶低通滤波器结构

这个结构很简单,优势就是在于简易实现二阶低通。这种类电压跟随器的结构,其增益为1。


2 截止频率

在网上可以查到,该结构截止频率为:

然而,在仿真中,当选定Ra=Rb,Ca=Cb时就会发现,-3dB的衰减频率点并非我计算得到的截止频率数值。然而中心频率却是对应计算得到截止频率。
网络上也存在特征频率和截止频率的区别的相关说明,二阶的计算也有,不过是针对于纯RC电路的。
这里给出下计算截止频率为10kHz下的仿真图和交流分析结果:

![在这里插入图片描述](https://img-blog.csdnimg.cn/ee1306d9c7934d62b64cf2bbfde37ea6.png) 可以发现,10KHz时,衰减明显大于10KHz,相位的中心频率-90°点在10KHz处。因此设定的电阻电容值对应的截止频率并非10KHz。

那么问题来了,哪儿出现了问题。
为此我查阅了很多资料,发现当取Ra=Rb,设定Cb如下:

那么Ca的计算就可以等效为:

值得一提的是,这里的计算截止频率的方式还是前面提到的公式,只是不取Ca=Cb。此时仿真和交流分析结果如下: 可以发现,中心频率依旧在-90°,当时幅值响应中10KHz的衰减明显接近于-3dB,下图为局部放大: ![在这里插入图片描述](https://img-blog.csdnimg.cn/5813d15084c74392b3b2530c55c059dd.png) 由放大图可以看到,10KHz处的幅值准确的位于-3dB处。

3 结语

Sallen-Key滤波是一种基于运算放大器阶段简单的有源滤波器,它是理想的过滤音频频率。

这是一种最广泛使用的滤波器拓扑结构。其受欢迎的原因之一是,这种配置对运算放大器的性能的过滤器性能的依赖性最小。这种结构的另一个优势是,最大电阻值最小的电阻值和电容值的最大最小电容值的比例很低。

然而,其一个严重的缺点是不易调谐滤波。因此电容的选取是很有可能影响其调谐频率的,此时的相位中心频率却不会为此而改变。

本博客讲的也多是实践中遇到的问题,由于自身并非从事这个方向,对于细节的东西也没有过多的把握,不过相关的参数设计肯定是存在规律和方式的,只不过过程相比于普通的RC滤波显然会更加复杂,简单的结构往往也会带来复杂的设计过程,所以鱼和熊掌一般不能兼得。

对参数设计有兴趣的可以参考卓晴老师的博客,写的很好:Sallen-Key 低通滤波器设计过程

### 二阶 Sallen-Key 低通滤波器设计与实现 #### 背景介绍 Sallen-Key 滤波器是一种广泛应用于电子电路中的有源滤波器拓扑结构,特别适合于设计一阶和二阶滤波器[^1]。它常作为构建更高阶滤波器的基础模块。 #### 电路分析 对于二阶 Sallen-Key 低通滤波器而言,其核心功能是对输入信号进行频率选择性衰减,在截止频率之下允许大部分信号通过,而在高于该频率的部分则显著削弱信号强度。此类型的滤波器通常采用运算放大器来提供必要的增益控制以及稳定性支持[^2]。 #### 参数定义 - **截止频率 \( f_c \)**:这是指当输出功率下降到输入功率的一半时所对应的频率点,也即幅值响应减少至约0.707倍(-3dB)的位置。 \[ f_c = \frac{1}{2\pi\sqrt{R_1 R_2 C_1 C_2}} \] 其中 \( R_1, R_2 \) 表示电阻值;\( C_1, C_2 \) 则代表电容器容量[^3]。 - **品质因数 Q**:决定了峰值处的选择性和带宽特性。较高的Q意味着更尖锐的共振峰,而较低的Q表示较平滑过渡区域。 \[ Q = \sqrt{\frac{(C_1+C_2)}{C_1*C_2*R_1*R_2}} \] #### 设计举例 假设我们希望设计一个具有特定截止频率 \(f_c\) 的二阶 Sallen-Key 低通滤波器: ```python import math def calculate_sallen_key(fc=1000, Q=0.707): """ 计算给定fc(Quality Factor)下的Sallen-Key LPF元件值 :param fc: 截止频率(Hz) :param Q: 品质因子(默认为Butterworth响应) :return: 返回(R1,R2,C1,C2)元组形式的标准阻抗/电容组合 """ # 随意选取标准电容值(C1=C2),简化计算流程 C1 = C2 = 1e-6 # 单位法拉(F) omega_c = 2 * math.pi * fc K = 1/Q / (omega_c*math.sqrt(C1*C2)) R1 = ((K - math.sqrt(K*K - 4)))/(2*omega_c*C1) R2 = ((K + math.sqrt(K*K - 4))/(2*omega_c*C2)) return round(R1),round(R2),C1,C2 print(calculate_sallen_key()) ``` 上述代码片段展示了如何基于指定的截止频率 (\(f_c\)) 及品质因素 (Q) 来推导出实际应用所需的电阻和电容数值。 #### 总结 综上所述,利用 Sallen-Key 架构可以方便快捷地搭建起满足需求的各种类型低通滤波器,并且由于其实现简单、成本低廉等特点,在众多领域得到了广泛应用。值得注意的是,在具体实施过程中还需要考虑诸如温度漂移等因素的影响以确保最终效果达到预期目标。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LEODWL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值