温故知新(六)——状态观测器

本文详细介绍了状态观测器的概念,重点讲解了Luenberger状态观测器的工作原理,包括通过输入输出重建系统状态、补偿器的作用以及如何通过极点配置优化观测器性能。探讨了如何通过矩阵运算确保系统稳定性,并强调了在电控与前馈控制中的应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


1 什么是状态观测器?

为了对系统实现状态反馈,状态观测器应运而生。状态观测器是一种通过原受控系统的输入、输出量来重新构建一个与原系统相似的动态系统。
它的输出信号的状态估计近似于原受控系统的状态,其差值的极限为0。基础构想如图所示。
在这里插入图片描述


2 Luenberger状态观测器

当系统状态量难以获取,但实际控制中又需要利用系统状态量时,如何通过输入量和输出量重构系统状态量,这便是Luenberger状态观测器设计初衷。Luenberger状态观测器通过在系统的反馈通道上设置一个补偿器,可以获得一些不可测的信息,并产生比原系统阶数低的动态系统。Luenberger状态观测器的优点在于,它精度高、稳定性强且具有较低的相位之后,它在电位控制系统、前馈控制策略等方面的应用有不错的效果。
假设系统状态观测量和输出观测量满足如下方程:
在这里插入图片描述
Luenberger状态观测器的模型方程:
在这里插入图片描述
其中,A为状态矩阵,B为输入矩阵,C为输出矩阵,L为观测器增益矩阵,是对偏差的加权。
因为系统在一般情况下会出现误差。因此常用负反馈的方法来提高系统的抗千扰能力,通过输出误差控制状态误差,使得估计状态和真实状态之间的误差逐步减小,实现闭环控制,以此提高状态观测器重构系统的能力。
定义真实状态和估计状态的误差向量如下:
在这里插入图片描述
则误差的动态行为是:
在这里插入图片描述
由上式可知,矩阵(A-LC)的极点决定了误差是否衰减以及如何衰减,而对于一个已知系统,A和C由系统特性决定。因此,增益矩阵L成为系统是否稳定的关键,这一问题被成为系统的极点配置问题。若能使得矩阵(A-LC)具有适当的特征值,则可以使得误差具有一定的衰减率。
由于:
在这里插入图片描述
因此,问题转化为(AT , CT)的极点配置问题,该极点配置问题可解的充要条件为:(AT , CT)完全能控且完全能测。按照极点配置方法来设计求解的极点配置问题,从而得到观测器的增益矩阵Z,观测器增益矩阵L=ZT


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LEODWL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值