理解协方差
回顾方差
定义:用于衡量一组数据的离散程度。在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。
公式:
左边为样本方差,X为变量, u为样本均值,N为样本例数。
假设统计一个社区的人的年龄,X就是每个人的年龄,u就是平均年龄。求年龄的方差可以表现出这个社区的人的年龄跨度。
协方差
一张最直观的图表示协方差
定义:协方差(Covariance)用于衡量两个变量的总体误差。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。
假设对刚才的社区的未成年人进行年龄和身高的统计,年龄和身高是正相关的。
公式2—可以有如下理解:如果有X,Y两个变量,每个时刻的“X值与其均值之差”乘以“Y值与其均值之差”得到一个乘积,再对这每时刻的乘积求和并求出均值。
再举个例子,小区未成年三人,14岁-1.5m,17岁-1.8m,11岁-1.2m,平均14岁-1.5m,利用上述公式进行计算 Cov =[ (14-14) ✖ (1.5-1.5) + (17-14) ✖ (1.8-1.5) + (12-14) ✖ (1.2-1.5) ] / 2 = 0.75
求出的值大于0,与我们的判断相符合,年龄和身高是正相关的。(啊啊啊! 什么废话~)
多维的情况如图
1.协方差可以反应两个变量的协同关系, 变化趋势是否一致。同向还是方向变化。
2.X变大,同时Y也变大,说明两个变量是同向变化的,这时协方差就是正的。
3.X变大,同时Y变小,说明两个变量是反向变化的,这时协方差就是负的。
4.从数值来看,协方差的数值越大,两个变量同向程度也就越大。反之亦然。
看无数次,忘记无数次,写出来看能不能印象深刻点。( ̄ε(# ̄) ( ̄ε(# ̄) ( ̄ε(# ̄)