组合导航
文章平均质量分 60
I am SJJ
啥都还不会,努力在学
展开
-
【组合导航代码ECL】状态预测函数predictStates.m
写在前面的的话最近学习组合导航,要对ECL代码有进一步的理解,暂时以此作为笔记主函数function [states, correctedDelAng, correctedDelVel] = PredictStates( ... states, ... % previous state vector (4x1 quaternion, 3x1 velocity, 3x1 positi...原创 2018-11-20 14:46:23 · 956 阅读 · 0 评论 -
【组合导航代码ECL】状态预测函数predictCovariance.m
主函数function P = PredictCovariance(deltaAngle, ... deltaVelocity, ... states,... P, ... % Previous state covariance matrix dt, ... % IMU and prediction time step param) % tuning ...原创 2018-11-21 23:43:48 · 579 阅读 · 0 评论 -
【组合导航代码ECL】状态融合函数FuseVelocity.m
主函数‘function [...H states, ... % state vector after fusion of measurements P, ... % state covariance matrix after fusion of corrections innovation,... % NED velocity innovations (m/s) ...原创 2018-11-22 10:16:30 · 638 阅读 · 0 评论 -
【组合导航代码ECL】状态融合函数FusePosition与FuseBaroHeight
FusePosition.m位置融合函数与速度融合函数相同,其H阵为1FuseBaroHeight气压高融合函数与位置速度融合函数同,其H阵为1,但是其高程初始化为﹣值,其新息的计算公式为:Height(k)−=Heght(k−1)+HeightmeaHeight(k)^-=Heght(k-1)+Height_{mea}Height(k)−=Heght(k−1)+Heightmea,其他...原创 2018-11-22 11:13:06 · 351 阅读 · 0 评论 -
[PX4编译环境] 遇到的问题总结
openGL的问题com.jogamp.opengl.GLException: X11GLXDrawableFactory - Could not initialize shared resources for X11GraphicsDevice[type .x11, connection :0, unitID 0, handle 0x0, owner false, ResourceToolki...原创 2018-12-05 21:48:19 · 2751 阅读 · 1 评论 -
【组合导航】四元数的运算及四元数微分理解
前言在导航中一般都具有两套坐标系,载体坐标系与世界坐标系,联系两套坐标系的是用旋转向量,但是旋转向量存在着奇异性,大多使用四元数,记录下四元数的运算及四元数微分方程。四元数运算四元数的表达式为:q=q0+q1i+q2i+q3iq=q_0+q_1i+q_2i+q_3iq=q0+q1i+q2i+q3i其中ijk为三个虚部,三个虚部满足以下关系式:{i2=j2=k2=−1ij=k,j...原创 2018-12-26 18:06:49 · 3903 阅读 · 1 评论 -
【组合导航代码ECL】状态融合函数FuseMag函数(0.fuse with freee decline 1.fuse with got decline 2.fuse magheading )
主函数function [... states, ... % state vector after fusion of measurements P, ... % state covariance matrix after fusion of corrections innovation, ... % Declination innovation - rad va...原创 2018-12-22 22:38:25 · 303 阅读 · 0 评论 -
【组合导航】imu中的低通滤波器
ecl中的低通滤波器这里以磁传感器为例mag_filter=mag_filter*0.9+mag_sample*0.1采样率为100hz一阶数字低通滤波器的公式为:Yn=a∗Xn+(1−a)∗Yn−1Y_n=a*X_n+(1-a)*Y_{n-1}Yn=a∗Xn+(1−a)∗Yn−1式中:Xn——本次的采样值X_n——本次的采样值Xn——本次的采样值Yn−1——上次的滤波输出...原创 2019-05-29 10:14:50 · 2685 阅读 · 0 评论