一文梳理冷启动推荐算法模型进展

本文探讨了冷启动推荐问题,包括用户和物品的冷启动,重点关注如何高效利用side information、有限的交互数据,以及探索与利用策略。提出了如MetaEmbedding、DropoutNet等模型,强调知识图谱、跨领域推荐和多行为推荐的作用,并介绍了元学习在冷启动推荐中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

嘿,记得给“机器学习与推荐算法”添加星标


作者:朱勇椿

| 单位:中国科学院大学

研究方向:跨域推荐、多任务学习

如何给新加入的用户推荐可能感兴趣的物品?如何将新上架的物品推荐给潜在的用户?这两个问题分别是用户冷启动和物品冷启动,统称为冷启动推荐。冷启动问题是推荐系统中极具挑战的一个问题,也是一个业界学术界同时高度关注的问题,本期为大家分享一些冷启动推荐算法层面的思路。

冷启动推荐特指如何给新用户或者新物品进行推荐。“新”也就意味着交互数据少,因此很难抓获冷启动用户兴趣偏好,以及冷启动物品的特质。如何进行好的冷启动推荐,主要可以从以下几个方面着手:

  • 高效地利用side information

  • 高效地利用有限的交互数据

  • Explore & exploit

除了常见的用户和物品冷启动推荐以外,还有一些其他场景的冷启动问题,本文也会简单进行介绍。


一、高效地利用side information

我们把除了id信息以外的别的信息统称为side information,比如属性特征,用户性别、年龄特征,物品的类别、价格,额外的补充信息比如知识图谱,辅助领域等等。现有的推荐模型已经将用户、物品属性用到模型中,但是针对冷启动问题,这些辅助信息还可以有更加高效的使用方法。

1、高效利用属性特征

1.1 DropoutNet[1]

这篇文章改变了模型训练方式,在训练过程中加入dropout的机制,使得模型不过度依赖于ID embedding,而是其他内容特征。从而使得冷启动推荐主要是根据内容特征来进行推荐,减小了不好的ID embedding的影响。

1.2 MetaEmbedding[2]

冷启动推荐效果不佳,主要原因在于交互数量少,ID embedding学不好。那么为了更好地学习ID embedding,

### 推荐算法中的最佳实践 在构建高效的推荐系统时,采用先进的自然语言处理技术和合理的架构设计至关重要。神策智能推荐利用基于神经网络的文本语义分析模型来实现深层次用户偏好的挖掘[^1]。这种技术能够超越简单的关键词匹配方式,深入理解用户的兴趣领域并提供更加精准的内容推送。 对于开发人员来说,在实践中应用这些高别的NLP功能可能涉及到多个方面的工作: #### 数据预处理阶段 为了使机器学习模型更好地理解和分类输入的数据,通常需要先对其进行清洗和转换操作。这一步骤包括但不限于去除噪声、标准化格式以及提取特征向量等过程。 #### 模型训练与优化 选择合适的算法框架是成功实施的关键之一。目前主流的方法有矩阵分解、协同过滤和支持向量机等;而深度学习则提供了诸如卷积神经网络(CNN) 和循环神经网络(RNN)这样的强大工具用于捕捉复杂的模式关系。此外,还需要考虑如何调整超参数以达到最优性能表现。 #### 部署上线后的监控维护 即使是最优秀的预测引擎也需要持续不断地改进和完善。因此建立有效的反馈机制就显得尤为重要了——它可以帮助我们及时发现潜在问题所在,并据此作出相应调整措施确保系统的稳定性和准确性。 ```python import numpy as np from sklearn.model_selection import train_test_split from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Embedding, LSTM # 假设已经准备好了一个包含用户行为日志的数据集 X 和对应的标签 y X_train, X_test, y_train, y_test = train_test_split(X, y) model = Sequential([ Embedding(input_dim=vocab_size, output_dim=embedding_dim), LSTM(units=lstm_units), Dense(1, activation='sigmoid') ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) history = model.fit(X_train, y_train, epochs=num_epochs, validation_data=(X_test, y_test)) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值