两角和正切的展开式+正切公式+一元微积分

本文深入探讨了正切加法定理的数学表达,详细解释了tan(A+B)的计算公式,即(tanA+tanB)/(1-tanAtanB),并通过与sin(A+B)和cos(A+B)的关系进行证明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

t a n ( A + B ) = s i n ( A + B ) c o s ( A + B ) = ( t a n A + t a n B ) / ( 1 − t a n A t a n B ) tan(A+B)=\frac{sin(A+B)}{cos(A+B)}=(tanA+tanB)/(1-tanAtanB) tan(A+B)=cos(A+B)sin(A+B)=(tanA+tanB)/(1tanAtanB)
(证明:由原来的公式上下同除coscos)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值