算法基础知识

一、机器学习

1 树模型

1.1 树模型基础

1.1.1 决策树的类型

常见的几种决策树
微痛学习 决策树

1.2 Bagging

1.2.1 随机森林

Bagging与随机森林算法原理小结
系统梳理 Gradient Boosting Machine

1.3 Boosting

1.3.1 LightGBM

LightGBM 详细讲解

1.3.2 Xgboost

XGBoost 详细讲解
XGboost特征重要性计算方式

重要性类型
通过feature_importance_属性得到的特征重要性结果与模型参数importance_type(重要性类型)直接相关,具体而言供有三种:weight、gain和cover。
weight
weight 表示一个特征在所有树中被使用的次数。这个参数反映了该特征的重要性,因为如果一个特征被用于更多的树中,那么它对最终预测结果的贡献就更大。
gain
gain 表示一个特征在所有树中对预测结果的平均增益。这个参数反映了该特征在每个节点上的分裂能力,因为如果一个特征在每个节点上的分裂能力越强,它对最终预测结果的贡献就越大。
cover
cover 表示一个特征在所有树中对样本的平均覆盖度。这个参数反映了该特征对模型的覆盖能力,因为如果一个特征对更多的样本有影响,它对最终预测结果的贡献就更大。

1.4 Stacking

Stacking集成模型

1.5 不同集成树的区别

GDBT模型、XGBoost和LightGBM之间的区别与联系

1.6 EM算法

如何通俗理解EM算法

2 评分卡

风控建模指标PSI,IV和WOE理解
评分卡模型中的IV和WOE详解
机器学习特征工程-特征选择之IV

3 方差和偏差

https://c.d2l.ai/stanford-cs329p/_static/pdfs/cs329p_slides_7_1.pdf

二、深度学习

1 优化器

Tensorflow-各种优化器总结与比较
Transformer模型详解(图解最完整版)

2 算法

2.1 推荐算法

论文讲解
深入浅出DeepFM

3 GraphEmbedding

节点嵌入算法—Node2vec原理与优化

三、大数据

1 Spark

https://www.statist.cn/2020/05/16/Spark%E7%9A%84%E6%89%A7%E8%A1%8C%E8%BF%87%E7%A8%8B/#more
https://www.statist.cn/2020/03/14/Spark%E6%A6%82%E5%BF%B5%E6%A6%82%E8%A7%88%EF%BC%9AClusters,%20Jobs,%20Stages,%20Tasks/#more

四、预训练模型

1. Bert

BERT详解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值