表格理解(Table Understanding)任务可以使用多种大模型,其中一些主流的模型包括:
-
Tapas(Table Parser):Tapas 是 Google 提出的基于 BERT 的表格问答模型,能够处理表格数据并生成自然语言答案。Tapas 的核心思想是将表格内容与文本问题结合进行编码,适用于表格问答、表格推理等任务。
-
TUTA(Tree-based Transformer for Table Representation Learning):TUTA 是针对表格数据结构设计的树形 Transformer 模型。该模型通过构建树结构表示表格的行、列、单元格之间的关系,学习表格数据中的复杂依赖关系,适用于表格分类、表格理解等任务。
-
DUE(Dual-Encoder Model for Table Understanding):DUE 是一种用于表格问答和表格推理的模型,基于 Transformer 编码器,将表格内容与问题输入两个编码器,计算表格与问题的相关性。
-
LLaMA (Large Language Model Meta AI):虽然 LLaMA 和其他类似的 GPT 模型(如 O