KL散度非负性证明

1 KL散度

KL散度(Kullback–Leibler divergence) 定义如下:
      D K L = ∑ i = 1 n P ( x i ) × log ⁡ ( P ( x i ) Q ( x i ) )      D_{KL}=\sum_{i=1}^nP\left(x_i\right)\times\log\left(\frac{P(x_i)}{Q(x_i)}\right)      DKL=i=1nP(xi)×log(Q(xi)P(xi))  
目标:证明上式非负。

2 凸函数与凹函数

连续函数 f ( x ) f(x) f(x)的定义域为 I I I,如果对 I I I内任意两个实数 x 1 , x 2 x_1, x_2 x1,x2及任意实数 λ ∈ ( 0 , 1 ) \lambda \in (0,1) λ(0,1),都有
f ( λ x 1 + ( 1 − λ ) x 2 ) ≤ λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) ( 1 ) f\left(\lambda x_1+(1-\lambda)x_2\right)\leq\lambda f\left(x_1\right)+(1-\lambda)f\left(x_2\right)\quad(1) f(λx1+(1λ)x2)λf(x1)+(1λ)f(x2)(1)
则称 f ( x ) f(x) f(x) I I I上的凸函数(下凸)。
若有
f ( λ x 1 + ( 1 − λ ) x 2 ) ≥ λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) ( 2 ) f\left(\lambda x_1+(1-\lambda)x_2\right)\geq\lambda f\left(x_1\right)+(1-\lambda)f\left(x_2\right) \quad(2) f(λx1+(1λ)x2)λf(x1)+(1λ)f(x2)(2)
则称 f ( x ) f(x) f(x) I I I上的凹函数。
举例:
l o g ( x ) log(x) log(x)是凹函数,反之 − l o g ( x ) -log(x) log(x)是凸函数。

3 加权Jensen不等式

f ( x ) f(x) f(x)是区间 [ a , b ] [a,b] [a,b]上的凸函数,则对任意的实数 x 1 , x 2 , ⋯   , x n ∈ [ a , b ] x_1, x_2, \cdots, x_n \in [a, b] x1,x2,,xn[a,b],对所有的非实数 a 1 , a 2 , ⋯ a n ≥ 0 a_1,a_2,\cdots a_n\geq0 a1,a2,an0,且 a 1 + a 2 + ⋯ a n = 1 a_1+a_2+\cdots a_n=1 a1+a2+an=1, 则下列不等式成立。
f ( a 1 x 1 + a 2 x 2 + ⋯ + a n x n ) ≤ a 1 f ( x 1 ) + a 2 f ( x 2 ) + ⋯ + a n f ( x n ) f\left(a_1x_1+a_2x_2+\cdots+a_nx_n\right)\leq a_1f\left(x_1\right)+a_2f\left(x_2\right)+\cdots+a_nf\left(x_n\right) f(a1x1+a2x2++anxn)a1f(x1)+a2f(x2)++anf(xn)

4 证明KL散度非负性

KL散度(Kullback–Leibler divergence) 定义如下:
D K L = ∑ i = 1 n P ( x i ) × log ⁡ ( P ( x i ) Q ( x i ) ) D_{KL}=\sum_{i=1}^nP(x_i)\times\log\left(\frac{P(x_i)}{Q(x_i)}\right) DKL=i=1nP(xi)×log(Q(xi)P(xi))

其中:
∑ i = 1 n P ( x i ) = 1 \sum_{i=1}^nP(x_i)=1 i=1nP(xi)=1
由于log(x)是凹函数,所以-log(x)是凸函数,因此将 KL散度定义式先变形再应用加权Jensen不等式,得:
D K L = ∑ i = 1 n P ( x i ) × log ⁡ ( P ( x i ) Q ( x i ) ) = ∑ i = 1 n P ( x i ) × ( − log ⁡ ( Q ( x i ) P ( x i ) ) ) ≥ − log ⁡ ( ∑ i = 1 n P ( x i ) × Q ( x i ) P ( x i ) ) = − log ⁡ ( ∑ i = 1 n Q ( x i ) ) \begin{aligned} D_{KL}& =\sum_{i=1}^nP\left(x_i\right)\times\log\left(\frac{P(x_i)}{Q(x_i)}\right) \\ &=\sum_{i=1}^nP\left(x_i\right)\times\left(-\log\left(\frac{Q(x_i)}{P(x_i)}\right)\right) \\ &\geq-\log\left(\sum_{i=1}^nP\left(x_i\right)\times\frac{Q(x_i)}{P(x_i)}\right) \\ &=-\log\left(\sum_{i=1}^nQ\left(x_i\right)\right) \end{aligned} DKL=i=1nP(xi)×log(Q(xi)P(xi))=i=1nP(xi)×(log(P(xi)Q(xi)))log(i=1nP(xi)×P(xi)Q(xi))=log(i=1nQ(xi))
Tips:Jensen不等式中的 x i x_i xi在这里相当于 P ( x i ) Q ( x i ) \frac{P(x_i)}{Q(x_i)} Q(xi)P(xi) f f f相当于 − l o g ( ) -log() log(); a i a_i ai相当于 P ( x i ) P(x_i) P(xi)
由于 Q ( x i ) Q(x_i) Q(xi)是一个概率分布,因此和 P ( x i ) P(x_i) P(xi)一样满足下面的式子 ∑ i = 1 n Q ( x i ) = 1 \sum_{i=1}^nQ\left(x_i\right)=1 i=1nQ(xi)=1因此可以得到
D K L ≥ − log ⁡ ( 1 ) = 0 D_{KL}\ge-\log(1)=0 DKLlog(1)=0
到此KL散度非负性得证。

参考链接:
https://www.cnblogs.com/BlairGrowing/p/15859968.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值