微调下载到本地的guwenbert-large预训练语言模型进行古文翻译的完整可运行代码,解码器使用roberta中文版,或者bert-base-chinese,请你决定哪个比较好。{
{
"architectures": [
"RobertaForMaskedLM"
],
"attention_probs_dropout_prob": 0.1,
"bos_token_id": 0,
"eos_token_id": 2,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 1024,
"initializer_range": 0.02,
"intermediate_size": 4096,
"layer_norm_eps": 1e-05,
"max_position_embeddings": 514,
"model_type": "roberta",
"num_attention_heads": 16,
"num_hidden_layers": 24,
"pad_token_id": 1,
"type_vocab_size": 1,
"vocab_size": 23292,
"tokenizer_class": "BertTokenizer"
}
是guwenbert-large的模型参数;{
"attention_probs_dropout_prob": 0.1,
"directionality": "bidi",
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"max_position_embeddings": 512,
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pooler_fc_size": 768,
"pooler_num_attention_heads": 12,
"pooler_num_fc_layers": 3,
"pooler_size_per_head": 128,
"pooler_type": "first_token_transform",
"type_vocab_size": 2,
"vocab_size": 21128
}
这是roberta中文版的模型参数;{
"architectures": [
"BertForMaskedLM"
],
"attention_probs_dropout_prob": 0.1,
"directionality": "bidi",
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 0,
"pooler_fc_size": 768,
"pooler_num_attention_heads": 12,
"pooler_num_fc_layers": 3,
"pooler_size_per_head": 128,
"pooler_type": "first_token_transform",
"type_vocab_size": 2,
"vocab_size": 21128
}
这是bert-base-chinese的模型参数。要求代码中需要有数据准备,我的数据集为本地的古文的txt及现代文txt文件、模型架构调整、训练配置,训练时要将每轮训练后的交叉熵损失输出到运行面版最后进行可视化折线图输出、执行步骤、评估与优化以及部署应用,需要确保代码的每一部分都有注释,解释关键步骤,同时指出用户可能需要修改的地方,比如数据路径、模型保存路径等。