decoder配置中,max_length、max_position_embeddings大小必须一致么

在 Transformer 模型中,max_lengthmax_position_embeddings 是两个相关但独立的配置项,它们不需要严格相等,但有一定的关联

1. 参数含义

  1. max_length:

    • 用于生成任务(如文本生成、序列生成)的配置。
    • 表示解码器在推理阶段生成序列的最大长度。
    • 如果生成序列超过该值,解码过程会被截断。
    • 这是一个运行时配置,不影响模型结构。
  2. max_position_embeddings:

    • 定义 Transformer 模型中支持的最大序列长度(位置编码的最大范围)。
    • 它影响模型的架构:模型中用于位置编码的向量大小。
    • 通常设置为模型支持的最大输入序列长度(例如 51210242048)。
    • 这是一个静态配置,模型在预训练时已经确定。

2. 两者的关系

这段代码实现了一个解码函数 `decode`,用于在序列到序列模型中生成输出序列。下面是对该函数的解释: - `decode` 函数接受以下参数: - `decoder`:解码器模型 - `decoder_hidden`:解码器的初始隐藏状态 - `encoder_outputs`:编码器的输出 - `voc`:词汇表对象,用于将索引转换为单词 - `max_length`:生成序列的最大长度,默认为预定义的最大长度 `MAX_LENGTH` - 首先,创建一个张量 `decoder_input`,其中只包含起始标记 SOS_token。 - 将 `decoder_input` 移动到适当的设备上。 - 创建两个空列表 `decoded_words` 和 `decoder_attentions`,用于存储解码后的单词和注意力权重。 - 使用一个循环来生成序列。在每个时间步中,执行以下操作: - 使用解码器模型、隐藏状态和编码器的输出计算解码器的输出和下一个隐藏状态。 - 从解码器的输出中选择前三个最高值作为候选词的索引。 - 选择候选词中的第一个作为当前时间步的输出。 - 如果当前时间步的输出为 EOS_token,表示已经生成了结束标记,将 '<EOS>' 添加到 `decoded_words` 中并终止循环。 - 否则,将当前时间步的输出对应的单词添加到 `decoded_words` 中。 - 在生成完整的序列后,返回 `decoded_words` 和注意力权重 `decoder_attentions`。 这段代码使用了一个循环来逐步生成输出序列,并且在每个时间步只生成一个单词。生成的序列可以通过 `decoded_words` 获取,注意力权重可以通过 `decoder_attentions` 获取。 希望以上解释对您有帮助!如果您还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无声之钟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值