decoder配置中,max_length、max_position_embeddings大小必须一致么

在 Transformer 模型中,max_lengthmax_position_embeddings 是两个相关但独立的配置项,它们不需要严格相等,但有一定的关联

1. 参数含义

  1. max_length:

    • 用于生成任务(如文本生成、序列生成)的配置。
    • 表示解码器在推理阶段生成序列的最大长度。
    • 如果生成序列超过该值,解码过程会被截断。
    • 这是一个运行时配置,不影响模型结构。
  2. max_position_embeddings:

    • 定义 Transformer 模型中支持的最大序列长度(位置编码的最大范围)。
    • 它影响模型的架构:模型中用于位置编码的向量大小。
    • 通常设置为模型支持的最大输入序列长度(例如 51210242048)。
    • 这是一个静态配置,模型在预训练时已经确定。

2. 两者的关系

微调下载到本地的guwenbert-large预训练语言模型进行古文翻译的完整可运行代码,解码器使用roberta中文版,或者bert-base-chinese,请你决定哪个比较好。{ { "architectures": [ "RobertaForMaskedLM" ], "attention_probs_dropout_prob": 0.1, "bos_token_id": 0, "eos_token_id": 2, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 1024, "initializer_range": 0.02, "intermediate_size": 4096, "layer_norm_eps": 1e-05, "max_position_embeddings": 514, "model_type": "roberta", "num_attention_heads": 16, "num_hidden_layers": 24, "pad_token_id": 1, "type_vocab_size": 1, "vocab_size": 23292, "tokenizer_class": "BertTokenizer" } 是guwenbert-large的模型参数;{ "attention_probs_dropout_prob": 0.1, "directionality": "bidi", "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "max_position_embeddings": 512, "num_attention_heads": 12, "num_hidden_layers": 12, "pooler_fc_size": 768, "pooler_num_attention_heads": 12, "pooler_num_fc_layers": 3, "pooler_size_per_head": 128, "pooler_type": "first_token_transform", "type_vocab_size": 2, "vocab_size": 21128 } 这是roberta中文版的模型参数;{ "architectures": [ "BertForMaskedLM" ], "attention_probs_dropout_prob": 0.1, "directionality": "bidi", "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 12, "num_hidden_layers": 12, "pad_token_id": 0, "pooler_fc_size": 768, "pooler_num_attention_heads": 12, "pooler_num_fc_layers": 3, "pooler_size_per_head": 128, "pooler_type": "first_token_transform", "type_vocab_size": 2, "vocab_size": 21128 } 这是bert-base-chinese的模型参数。要求代码中需要有数据准备,我的数据集为本地的古文的txt及现代文txt文件、模型架构调整、训练配置,训练时要将每轮训练后的交叉熵损失输出到运行面版最后进行可视化折线图输出、执行步骤、评估与优化以及部署应用,需要确保代码的每一部分都有注释,解释关键步骤,同时指出用户可能需要修改的地方,比如数据路径、模型保存路径等。
05-12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI专题精讲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值