重要比赛历年冠军

本文详细总结了深度学习领域的几个重要比赛,包括ImageNet、PASCALVOC和COCO数据集的历史及历年冠军算法。ImageNet作为深度学习的里程碑,其分类和检测任务推动了AlexNet、VGG、GoogleNet、ResNet和SENet等模型的创新。PASCALVOC和COCO数据集则在物体识别和分割方面发挥了关键作用。历年来,各参赛队伍不断刷新记录,展示了深度学习技术的快速发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习知识点总结

专栏链接:
https://blog.csdn.net/qq_39707285/article/details/124005405

本专栏主要总结深度学习中的知识点,从各大数据集比赛开始,介绍历年冠军算法;同时总结深度学习中重要的知识点,包括损失函数、优化器、各种经典算法、各种算法的优化策略Bag of Freebies (BoF)等。

本章介绍各数据集以及历年冠军



1. 重要比赛历年冠军

1.1. 数据集

深度学习发展起来有几个关键的因素,一个就是庞大的数据(比如说ImageNet),一个是GPU的出现。(还有更优的深度模型,更好的优化算法,可以说数据和GPU推动了这些的产生,这些产生继续推动深度学习的发展)。

1.1.1. ImageNet

  • 包含超过1500万的图像数据集,大约有22,000个类别。
  • 该数据集由李飞飞团队从2007年开始,耗费大量人力,通过各种方式(网络抓取,人工标注,亚马逊众包平台)收集制作而成,它作为论文在CVPR-2009发布。当时人们还很怀疑通过更多数据就能改进算法的看法。
  • 数据集官网

1.1.2. PASCAL VOC

在这里插入图片描述

  • PASCAL VOC 挑战赛主要有 Object Classification 、Object Detection、Object Segmentation、Human Layout、Action Classification 这几类子任务。
  • PASCAL VOC 2007 和 2012 数据集总共分 4 个大类:vehicle、household、animal、person,总共 20 个小类(加背景 21 类),预测的时候是只输出下图中黑色粗体的类别。
  • 数据集官网

VOC 2007数据集图片/目标总数量统计。在这里插入图片描述

1.1.3. MS COCO

数据集官网
MS COCO的全称是Microsoft Common Objects in Context,起源于微软于2014年出资标注的Microsoft COCO数据集。
COCO数据集是一个大型的、丰富的物体检测,分割和字幕数据集。这个数据集以scene understanding为目标,主要从复杂的日常场景中截取,图像中的目标通过精确的segmentation进行位置的标定。图像包括91类目标,328,000影像和2,500,000个label。目前为止有语义分割的最大数据集,提供的类别有80 类,有超过33 万张图片,其中20 万张有标注,整个数据集中个体的数目超过150 万个。
COCO数据集包含20万个图像;80个类别中有超过50万个目标标注,它是最广泛公开的目标检测数据库

1.2. 历年冠军

1.2.1 ImageNet的分类结果

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值