专栏链接:
https://blog.csdn.net/qq_39707285/article/details/124005405
本专栏主要总结深度学习中的知识点,从各大数据集比赛开始,介绍历年冠军算法;同时总结深度学习中重要的知识点,包括损失函数、优化器、各种经典算法、各种算法的优化策略Bag of Freebies (BoF)等。
本章介绍各数据集以及历年冠军
文章目录
1. 重要比赛历年冠军
1.1. 数据集
深度学习发展起来有几个关键的因素,一个就是庞大的数据(比如说ImageNet),一个是GPU的出现。(还有更优的深度模型,更好的优化算法,可以说数据和GPU推动了这些的产生,这些产生继续推动深度学习的发展)。
1.1.1. ImageNet
- 包含超过1500万的图像数据集,大约有22,000个类别。
- 该数据集由李飞飞团队从2007年开始,耗费大量人力,通过各种方式(网络抓取,人工标注,亚马逊众包平台)收集制作而成,它作为论文在CVPR-2009发布。当时人们还很怀疑通过更多数据就能改进算法的看法。
- 数据集官网
1.1.2. PASCAL VOC
- PASCAL VOC 挑战赛主要有 Object Classification 、Object Detection、Object Segmentation、Human Layout、Action Classification 这几类子任务。
- PASCAL VOC 2007 和 2012 数据集总共分 4 个大类:vehicle、household、animal、person,总共 20 个小类(加背景 21 类),预测的时候是只输出下图中黑色粗体的类别。
- 数据集官网
VOC 2007数据集图片/目标总数量统计。
1.1.3. MS COCO
数据集官网
MS COCO的全称是Microsoft Common Objects in Context,起源于微软于2014年出资标注的Microsoft COCO数据集。
COCO数据集是一个大型的、丰富的物体检测,分割和字幕数据集。这个数据集以scene understanding为目标,主要从复杂的日常场景中截取,图像中的目标通过精确的segmentation进行位置的标定。图像包括91类目标,328,000影像和2,500,000个label。目前为止有语义分割的最大数据集,提供的类别有80 类,有超过33 万张图片,其中20 万张有标注,整个数据集中个体的数目超过150 万个。
COCO数据集包含20万个图像;80个类别中有超过50万个目标标注,它是最广泛公开的目标检测数据库