[tensorflow 形变场处理图像代码]

该代码实现了一个在TensorFlow中对图像进行变形的方法,通过给定的位移场来扭曲图像。它利用双线性插值来在新的坐标上计算像素值,从而得到平滑的变形效果。主要函数包括warp_image和bilinear_interp,前者用于整体的图像变形,后者执行具体的双线性插值计算。
摘要由CSDN通过智能技术生成

 AI生成的,检查了问题不大

import tensorflow as tf


def warp_image(image, displacement_field):
    """
    Warps an image using a displacement field.
    Args:
        image: a tensor with shape (batch_size, height, width, num_channels).
        displacement_field: a tensor with shape (batch_size, height, width, 2).
    Returns:
        A tensor with shape (batch_size, height, width, num_channels) representing the warped image.
    """
    # Extract width and height
    h, w = tf.shape(image)[1], tf.shape(image)[2]
    # Generate a 2D grid for the coordinates
    xx, yy = tf.meshgrid(tf.range(w), tf.range(h))
    grid = tf.stack([yy, xx], axis=-1)
    grid = tf.cast(tf.tile(tf.expand_dims(grid, axis=0), [tf.shape(image)[0], 1, 1, 1]), tf.float32)
    # Compute the warped coordinates using the displacement field
    coords = grid + displacement_field
    # Map the image onto the warped coordinates using bilinear interpolation
    warped_image = bilinear_interp(image, coords)
    return warped_image

def bilinear_interp(image, coords):
    """
    Performs bilinear interpolation on an image using the given coordinates.
    Args:
        image: a tensor with shape (batch_size, height, width, num_channels).
        coords: a tensor with shape (batch_size, height, width, 2).
    Returns:
        A tensor with shape (batch_size, height, width, num_channels) representing the interpolated image.
    """
    # Extract the x and y coordinates
    y = coords[..., 0]
    x = coords[..., 1]
    # Rescale the coordinates from [0, w-1] and [0, h-1] to [-1, 1]
    x = (2.0 * x / tf.cast(tf.shape(image)[2] - 1, dtype=tf.float32)) - 1.0
    y = (2.0 * y / tf.cast(tf.shape(image)[1] - 1, dtype=tf.float32)) - 1.0
    # Compute the normalized coordinates
    coords_norm = tf.stack([y, x], axis=-1)
    # Compute the pixel indices
    indices = tf.floor(coords_norm)
    # Compute the weights
    weights = coords_norm - indices
    # Compute the pixel values
    i0 = tf.cast(indices[..., 0], tf.int32)
    i1 = tf.cast(indices[..., 1], tf.int32)
    p00 = gather_pixel_values(image, i0, i1)
    p01 = gather_pixel_values(image, i0, i1 + 1)
    p10 = gather_pixel_values(image, i0 + 1, i1)
    p11 = gather_pixel_values(image, i0 + 1, i1 + 1)
    pixel_values = tf.add_n([p00 * (1 - weights[..., 1]) * (1 - weights[..., 0]),
                             p01 * (1 - weights[..., 1]) * weights[..., 0],
                             p10 * weights[..., 1] * (1 - weights[..., 0]),
                             p11 * weights[..., 1] * weights[..., 0]])
    return pixel_values

def gather_pixel_values(image, y, x):
    """
    Gathers pixel values from an image given the y and x indices.
    Args:
        image: a tensor with shape (batch_size, height, width, num_channels).
        y: a tensor with shape (batch_size, height, width) containing the y indices.
        x: a tensor with shape (batch_size, height, width) containing the x indices.
    Returns:
        A tensor with shape (batch_size, height, width, num_channels) representing the pixel values.
    """
    indices = tf.stack([tf.range(tf.shape(image)[0]), tf.reshape(
     y, [-1]), tf.reshape(x, [-1])], axis=-1)
    pixel_values = tf.gather_nd(image, indices)
    pixel_values = tf.reshape(pixel_values, [tf.shape(
     image)[0], tf.shape(image)[1], tf.shape(image)[2], -1])
    return pixel_values

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

放飞自我的Coder

你的鼓励很棒棒哦~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值