AI生成的,检查了问题不大
import tensorflow as tf
def warp_image(image, displacement_field):
"""
Warps an image using a displacement field.
Args:
image: a tensor with shape (batch_size, height, width, num_channels).
displacement_field: a tensor with shape (batch_size, height, width, 2).
Returns:
A tensor with shape (batch_size, height, width, num_channels) representing the warped image.
"""
# Extract width and height
h, w = tf.shape(image)[1], tf.shape(image)[2]
# Generate a 2D grid for the coordinates
xx, yy = tf.meshgrid(tf.range(w), tf.range(h))
grid = tf.stack([yy, xx], axis=-1)
grid = tf.cast(tf.tile(tf.expand_dims(grid, axis=0), [tf.shape(image)[0], 1, 1, 1]), tf.float32)
# Compute the warped coordinates using the displacement field
coords = grid + displacement_field
# Map the image onto the warped coordinates using bilinear interpolation
warped_image = bilinear_interp(image, coords)
return warped_image
def bilinear_interp(image, coords):
"""
Performs bilinear interpolation on an image using the given coordinates.
Args:
image: a tensor with shape (batch_size, height, width, num_channels).
coords: a tensor with shape (batch_size, height, width, 2).
Returns:
A tensor with shape (batch_size, height, width, num_channels) representing the interpolated image.
"""
# Extract the x and y coordinates
y = coords[..., 0]
x = coords[..., 1]
# Rescale the coordinates from [0, w-1] and [0, h-1] to [-1, 1]
x = (2.0 * x / tf.cast(tf.shape(image)[2] - 1, dtype=tf.float32)) - 1.0
y = (2.0 * y / tf.cast(tf.shape(image)[1] - 1, dtype=tf.float32)) - 1.0
# Compute the normalized coordinates
coords_norm = tf.stack([y, x], axis=-1)
# Compute the pixel indices
indices = tf.floor(coords_norm)
# Compute the weights
weights = coords_norm - indices
# Compute the pixel values
i0 = tf.cast(indices[..., 0], tf.int32)
i1 = tf.cast(indices[..., 1], tf.int32)
p00 = gather_pixel_values(image, i0, i1)
p01 = gather_pixel_values(image, i0, i1 + 1)
p10 = gather_pixel_values(image, i0 + 1, i1)
p11 = gather_pixel_values(image, i0 + 1, i1 + 1)
pixel_values = tf.add_n([p00 * (1 - weights[..., 1]) * (1 - weights[..., 0]),
p01 * (1 - weights[..., 1]) * weights[..., 0],
p10 * weights[..., 1] * (1 - weights[..., 0]),
p11 * weights[..., 1] * weights[..., 0]])
return pixel_values
def gather_pixel_values(image, y, x):
"""
Gathers pixel values from an image given the y and x indices.
Args:
image: a tensor with shape (batch_size, height, width, num_channels).
y: a tensor with shape (batch_size, height, width) containing the y indices.
x: a tensor with shape (batch_size, height, width) containing the x indices.
Returns:
A tensor with shape (batch_size, height, width, num_channels) representing the pixel values.
"""
indices = tf.stack([tf.range(tf.shape(image)[0]), tf.reshape(
y, [-1]), tf.reshape(x, [-1])], axis=-1)
pixel_values = tf.gather_nd(image, indices)
pixel_values = tf.reshape(pixel_values, [tf.shape(
image)[0], tf.shape(image)[1], tf.shape(image)[2], -1])
return pixel_values