【llm 微调code-llama 训练自己的数据集 一个小案例】

这也是一个通用的方案,使用peft微调LLM。

准备自己的数据集

根据情况改就行了,jsonl格式,三个字段:context, answer, question

import pandas as pd
import random
import json


data = pd.read_csv('dataset.csv')
train_data = data[['prompt','Code']]
train_data = train_data.values.tolist()

random.shuffle(train_data)


train_num = int(0.8 * len(train_data))

with open('train_data.jsonl', 'w') as f:
    for d in train_data[:train_num]:
        d = {
            'context':'',
            'question':d[0],
            'answer':d[1]
        }
        f.write(json.dumps(d)+'\n')
with open('val_data.jsonl', 'w') as f:
    for d in train_data[train_num:]:
        d = {
            'context':'',
            'question':d[0],
            'answer':d[1]
        }
        f.write(json.dumps(d)+'\n')

初始化

from datetime import datetime
import os
import sys

import torch

from peft import (
    LoraConfig,
    get_peft_model,
    get_peft_model_state_dict,
    prepare_model_for_int8_training,
)
from transformers import (AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM,
                          TrainingArguments, Trainer, DataCollatorForSeq2Seq)

# 加载自己的数据集
from datasets import load_dataset

train_dataset = load_dataset('json', data_files='train_data.jsonl', split='train')
eval_dataset 
<think>我们正在创建一个程序,该程序需要完成以下任务: 1. 自动调用API生成图片数据集。这里假设我们调用的是某个文本到图像生成API(例如DALL·E、Stable Diffusion等)。 2. 将生成的图片数据集用于LlamaFactory微调LlamaFactory是一个用于微调大型语言模型的工具,但通常微调需要的是文本数据集。然而,用户提到了“图片数据集”,因此我们可能需要生成的是图像-文本对(例如,每张图片配有一个描述),以便用于多模态模型的微调(比如类似于LLaVA那样的模型)。不过,当前LlamaFactory主要支持文本模型(如LLaMA系列)的微调,所以这里可能存在混淆。 然而,根据引用[^1]中的信息,用户使用的是Meta-Llama-3-8B-Instruct,这是一个纯文本模型。因此,我们需要澄清:如果要微调文本模型,我们通常不需要图片数据集,而是需要文本数据集。如果是微调多模态模型(例如,结合图像和文本),那么我们需要图像-文本对。 但是,用户明确要求“生成图片数据集以用于LlamaFactory微调”,并且引用的命令是用于纯文本模型的聊天。所以可能存在两种可能性: - 用户可能想要生成图像描述数据集(即通过API生成图片,然后为这些图片生成文本描述,形成文本数据集用于微调文本模型)。 - 或者用户想要微调一个多模态模型,但目前LlamaFactory主要支持文本模型,因此可能需要额外处理。 考虑到引用信息中并没有多模态模型的微调,我们假设用户实际上想要生成图像描述数据集(即文本数据集)用于纯文本模型的微调。例如,我们可以通过以下步骤: 1. 使用文本生成API(比如使用大语言模型)生成大量的文本描述(作为提示词)。 2. 使用图像生成API(如DALL·E)根据这些描述生成图片(这一步实际上只是为了获得图像,但微调文本模型并不需要图像本身,而是需要文本数据。所以这里可能用户的意图是生成一个图文对数据集,用于训练一个图像描述模型?但是引用中却是纯文本模型的微调命令)。 由于用户的意图可能不够明确,我们根据问题描述,我们可以设计一个程序,它自动调用图像生成API生成图片,并同时保存生成图片时使用的文本提示(prompt)。这样,我们得到一个图片和对应文本提示的数据集。这个数据集可以用于: - 微调一个多模态模型(需要LlamaFactory支持多模态,目前可能不支持) - 或者用于训练一个图像描述模型(但需要另外的图像描述标注,这里我们只有提示词,通常提示词可以作为图像的弱标注) 但是,用户提到“用于LlamaFactory微调”,而LlamaFactory目前主要针对文本模型。因此,我们可能需要将生成的图片数据集转换为文本数据集。例如,我们可以使用一个图像描述生成模型(如BLIP、LLaVA等)为生成的每张图片生成详细的描述,然后我们得到(提示词,详细描述)这样的文本对,这样就可以用于微调一个文本到文本的模型(比如训练一个模型将简短的提示词扩展为详细的描述)。 因此,整个程序可以分为以下几个步骤: 1. 生成文本提示词(可以通过LLM生成,也可以使用已有的文本数据集)。 2. 调用图像生成API,使用这些提示词生成对应的图片,并保存图片和提示词(形成提示词-图片对)。 3. 使用图像描述生成模型为每张图片生成详细的描述(形成提示词-详细描述对)。 4. 将提示词-详细描述对整理成文本数据集(例如,每条数据包含输入文本(提示词)和输出文本(详细描述))。 5. 使用LlamaFactory对这个数据集进行微调训练一个文本生成模型(输入提示词,输出详细描述)。 然而,用户的问题只要求到生成图片数据集(即步骤2),但最终目的是用于微调。所以我们在程序中至少要完成步骤1和2,并保存图片和对应的提示词。至于步骤3-5,用户可能需要另外完成,但我们可以提供思路。 由于用户要求手动编写程序,我们将编写一个Python程序,大致包含以下部分: - 读取或生成文本提示词列表。 - 调用图像生成API(这里以DALL·E 3为例,使用OpenAI的API)。 - 保存生成的图片,并将图片路径和对应的提示词保存到一个元数据文件(如JSONL)中。 注意:生成图片需要API密钥,并且可能需要付费。 步骤: 1. 安装必要的库:openai(用于调用DALL·E),以及其他依赖如requests, Pillow(如果需要处理图片)等。 2. 设置OpenAI API密钥。 3. 生成提示词(这里我们可以使用一个简单的示例:固定提示词列表,或者用LLM生成一些提示词)。 4. 循环每个提示词,调用API生成图片。 5. 保存图片到本地,并记录图片文件名和提示词。 下面是一个简单的程序框架: 注意:由于生成图片可能比较耗时且消耗API调用次数,请谨慎设置提示词的数量。 我们将编写一个示例程序,使用少量的示例提示词来演示。 另外,由于用户提到“手动创建”,所以这个程序需要用户自己运行,并替换其中的API密钥和路径。 假设我们使用OpenAI的DALL·E 3 API,生成图片并保存。 程序代码: </think>以下是手动创建自动调用API生成图片数据集并用于LlamaFactory微调的程序开发方案,包含完整实现步骤和技术要点: ### 一、程序架构设计 ```mermaid graph TD A[提示词生成模块] --> B[图像API调用模块] B --> C[数据集预处理模块] C --> D[LlamaFactory微调模块] D --> E[模型评估模块] ``` ### 二、核心模块实现 #### 1. 提示词生成模块(`prompt_generator.py`) ```python import json from transformers import AutoTokenizer # 加载Prompt模板库 with open('prompt_templates.json') as f: TEMPLATES = json.load(f) def generate_prompts(num_samples, model_path="meta-llama/Meta-Llama-3-8B-Instruct"): """使用LLaMA模型批量生成图像描述提示词""" tokenizer = AutoTokenizer.from_pretrained(model_path) prompts = [] # 示例:组合模板生成多样化提示词 for _ in range(num_samples): template = random.choice(TEMPLATES["artistic"]) subject = random.choice(TEMPLATES["subjects"]) style = random.choice(TEMPLATES["styles"]) prompt = f"{template} {subject} {style}" prompts.append(prompt) # 保存到数据集目录 with open('dataset/prompts.jsonl', 'a') as f: for p in prompts: f.write(json.dumps({"prompt": p}) + '\n') return prompts ``` #### 2. 图像API调用模块(`image_api.py`) ```python import os import requests from PIL import Image API_KEY = os.getenv("STABLE_DIFFUSION_API_KEY") def generate_image(prompt, save_dir="dataset/images"): """调用Stable Diffusion API生成图像""" payload = { "prompt": prompt, "steps": 30, "width": 512, "height": 512 } headers = {"Authorization": f"Bearer {API_KEY}"} response = requests.post( "https://api.stability.ai/v2beta/stable-image/generate/sd3", headers=headers, files={"none": ''}, data=payload ) if response.status_code == 200: image_path = f"{save_dir}/{hash(prompt)}.png" with open(image_path, 'wb') as f: f.write(response.content) return image_path else: raise Exception(f"API Error: {response.text}") ``` #### 3. 数据集预处理模块(`dataset_builder.py`) ```python from datasets import Dataset, Image def build_dataset(image_dir="dataset/images", prompt_file="dataset/prompts.jsonl"): """构建HuggingFace格式的多模态数据集""" # 读取提示词 with open(prompt_file) as f: lines = f.readlines() prompts = [json.loads(line)["prompt"] for line in lines] # 匹配图像路径 image_paths = [f"{image_dir}/{hash(p)}.png" for p in prompts] # 创建数据集 dataset = Dataset.from_dict({ "image": image_paths, "text": prompts }).cast_column("image", Image()) # 数据集分割 return dataset.train_test_split(test_size=0.1) ``` #### 4. LlamaFactory微调模块(`finetune.py`) ```bash # 使用LlamaFactory命令行工具 CUDA_VISIBLE_DEVICES=0 llamafactory-cli finetune \ --model_name_or_path /path/to/llama3-8B \ --dataset ./dataset \ --template llama3 \ --image_model vit-base-patch16-224 \ --output_dir ./output \ --per_device_train_batch_size 4 \ --gradient_accumulation_steps 8 \ --learning_rate 2e-5 \ --num_train_epochs 3 ``` ### 三、主程序集成(`main.py`) ```python import schedule import time from prompt_generator import generate_prompts from image_api import generate_image def daily_job(): # 每日生成100个新样本 prompts = generate_prompts(100) for p in prompts: generate_image(p) # 自动触发微调(每周日) if time.strftime("%A") == "Sunday": os.system("python finetune.py") if __name__ == "__main__": schedule.every().day.at("02:00").do(daily_job) while True: schedule.run_pending() time.sleep(60) ``` ### 四、关键技术要点 1. **多模态数据处理** - 使用`PIL.Image`和`datasets`库处理图像-文本对 - 图像预处理:`transform = Compose([Resize(224), ToTensor()])` 2. **资源优化** ```python # 分批处理避免OOM for i in range(0, len(prompts), batch_size): batch = prompts[i:i+batch_size] with concurrent.futures.ThreadPoolExecutor() as executor: executor.map(generate_image, batch) ``` 3. **质量控制** ```python # 使用CLIP评分过滤低质量样本 clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") def filter_low_quality(image, prompt, threshold=0.25): inputs = processor(text=prompt, images=image, return_tensors="pt") outputs = clip_model(**inputs) return outputs.logits_per_image.item() > threshold ``` ### 五、部署建议 1. **基础设施** - GPU:至少A100 40GB * 2 - 存储:1TB SSD for 50K图像数据集 - 使用Docker封装环境: ```dockerfile FROM nvcr.io/nvidia/pytorch:23.10-py3 RUN pip install transformers datasets llama-factory ``` 2. **监控系统** ```python # Prometheus监控指标 from prometheus_client import start_http_server, Counter API_CALL_COUNTER = Counter('api_calls', 'Number of API calls') ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AGICoder

你的鼓励很棒棒哦~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值