毫米波雷达心率、呼吸检测原理 TI mmWave Labs —— Driver Vital Signs

毫米波雷达心率、呼吸检测原理

1. 概述

  • 普通成年人的心跳、呼吸的位移、频率参数如下:
Frome FrontFrome Back
Vital SignsFrequencyAmplitudeAmplitude
Breathing Rate (Adults)0.1 – 0.5 Hz~ 1- 12 mm~ 0.1 – 0.5 mm
Heart Rate (Adults)0.8 – 2.0 Hz~ 0.1 – 0.5 mm~ 0.01 – 0.2 mm
  • 基本原理
    通过探测由于目标微小振动所引起的在特定的Range bin的FMCW信号的相位变化。
    Δ ϕ b = 4 π λ Δ R \Delta \phi_b=\frac{4\pi}{\lambda} \Delta R Δϕb=λ4πΔR
    式中, Δ ϕ b \Delta \phi_b Δϕb 为相位变化, Δ R \Delta R ΔR为心脏或胸腔引起的位移变化。

2 FMCW 雷达基础原理

在这里插入图片描述
通过相位的变化去计算心跳、呼吸的频率,将发射信号以及混频后的中频信号系写为了复数形式,主要关注其相位的变化。


3 信号测量

在这里插入图片描述

  • 对于单个目标,心跳信号可看作一个同时具有频率和相位的正弦信号 b ( t ) b(t) b(t)
  • 为测量小幅度的振动,需要得到目标其Range bin里的相位变化 Δ ϕ b \Delta \phi_b Δϕb
  • 通过目标距离bin里对 b ( t ) b(t) b(t)信号做FFT,可得到其目标相位;
  • 假设目标距离为 m m m,进行FFT变换,提取距离为 m m m R a n g e b i n Range bin Rangebin处的振动信号,
  • 假设我们进行了FFT,并且对象位于 R a n g e b i n Range bin Rangebin为m处,则可以通过在nTs时间内连续提取Range bin为 m处的相位来获取振动信号 x ( t ) x(t) x(t),其中n是chirp的索引,Ts是连续测量的时间。

4 波形配置

在这里插入图片描述

  • 每个Chirp进行100次ADC采样,每个Chirp的持续时间为50 μ s \mu s μs,IF采样频率为2MHz;
  • 每帧发射两个Chirp,每帧的周期为50 m s ms ms
  • 目前仅使用单发单收的天线布局;
  • 生命体征波形沿“慢时间轴”采样,因此生命体征采样率等于系统的帧率;(即每一帧内,仅采一次样,通过连续的N帧得到心率、呼吸的相位变化)

5 算法流程

在这里插入图片描述

  1. Range FFT :对ADC数据执行快速傅立叶变换(FFT)以获取Range曲线;
  2. Range bin tracking:通过雷达的与人体的大致位置关系,可以确定目标的距离范围,通过在该范围内搜索最大值,获取目标对应的Range bin;
  3. Extract Phase:提取目标Range bin 处的相位;
    ① ② ③ 三个阶段循环,帧周期是50ms,即每一个帧周期内提取一次目标的相位,若目标与距离的径向距离发生变化,则需要根据Range bin tracking算法得出此时的Rang bin ,然后提取相位,循环发射N帧,即可得到目标的相位随帧数的取值变化,也可看作目标相位与时间的关系,记做振动信号 x ( t ) x(t) x(t)

  1. Phase Unwrapping:相位解缠绕,由于相位值在 [ − π , π ] [-π,π] [ππ]之间,而我们需要展开以获取实际的位移曲线。 因此每当连续值之间的相位差大于/小于±π时,通过从相位中减去2π来执行相位展开;
  2. Phase Difference :通过减去连续的相位值,对展开的相位执行相位差运算。 这有助于增强心跳信号并消除任何相位漂移;
  3. Bandpass Filtering 依据心跳和呼吸频率的不同,利用带通滤波器滤波将相位值进行滤波以进行区分。
  4. Spectral Estimation范围估计,对相位信号做FFT,依据峰值大小及其谐波特征,获取N个Frame时间内对应的呼吸频率。
  5. Decision判断,记录一段时间内的呼吸频率,根据不同的置信度指标判断此时的呼吸频率,并输出呼吸频率随时间变化的关系。
  6. 在对相位进行滤波后,此处的目的是减少人身体的相对位置移动而对心率测量造成的影响。(因为心率的测量是基于心脏收缩和舒张的微小运动产生的距离差,而引起的相位变化,依据微多普勒原理,当人的身体出现大幅摆动时,将会对其准确性造成影响)此处通过将样本进行分割,设置阈值去判断是否符合心率的变化范围,并选取稳定装态下的数据进行下一步的估计。
  7. 此处的方法与求呼吸频率类似,最终获得生命体征信号。

6 基于AWR 1642的应用实现

基于TI的AWR 1642 Demo板,经过建立工程、刷写、GUI等步骤即可实现其功能,GUI界面如下所示。在这里插入图片描述

在这里插入图片描述


上述参考TI的官方指南《 TI mmWave Labs —— Driver Vital Signs》,如有需要,可私信。

### 毫米波雷达在生命体征监测中的数据采集与处理 毫米波雷达作为一种先进的传感器技术,在检测生命体征方面具有独特的优势。其工作原理基于发射高频电磁波并接收反射信号来感知目标物体的距离、速度和角度等信息[^1]。 #### 数据采集过程 对于生命体征监测而言,毫米波雷达能够穿透衣物和其他非金属材料,从而精确测量人体的心跳、呼吸频率以及其他微动特征。具体来说: - **心跳检测**:通过捕捉心脏搏动引起的胸部细微位移变化; - **呼吸监测**:依据胸腔起伏产生的周期性运动模式; 这些生理参数的变化会调制回波相位或幅度,进而被雷达系统记录下来形成原始数据流[^2]。 #### 数据预处理阶段 为了提高后续算法性能,通常需要先对获取到的时间序列型态做初步清理: ```python import numpy as np from scipy.signal import detrend, butter, filtfilt def preprocess_signal(signal): # 去趋势项消除长期漂移影响 signal_detrended = detrend(signal) # 设计低通滤波器去除噪声干扰 (假设采样率为fs Hz) b, a = butter(3, [0.8/(fs/2), 4/(fs/2)], 'bandpass') filtered_signal = filtfilt(b, a, signal_detrended) return filtered_signal ``` 此代码片段展示了如何使用Python库`scipy`来进行简单的去噪和平滑操作,确保所提取的生命体征特征更加纯净可靠。 #### 特征工程环节 经过上述步骤得到较为干净清晰的时域曲线之后,则可以进一步挖掘其中蕴含的有效生物医学指标: - 计算心率变异性(HRV) - 提取呼吸速率及其变异程度 - 分析睡眠质量评估所需的相关统计量 以上各项计算均依赖于特定领域知识指导下的数学模型构建,同时也离不开高效能运算平台的支持以应对大规模实时数据分析需求。 #### AIoT架构下集成方案 当涉及到更广泛的应用场景时,如智能家居健康监护设备联网运作,则需考虑将本地节点收集的信息上传至云端服务器进行集中管理,并借助强大的云计算资源完成复杂度更高的任务——比如个性化健康管理建议生成或是疾病预警预测等功能实现。这一过程中不仅体现了AIoT理念中“万物互联”的精髓所在,也充分展现了现代信息技术赋能传统医疗保健行业的巨大潜力。
评论 96
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值