基于毫米波雷达的手势识别原理

1 Introduction/简介

本文以TI的Gesture UserGuide为参考,简述基于毫米波雷达的手势识别原理。

性能要求
可识别如下6种手势:左划、右划、向上、向下、顺时针、逆时针。
在这里插入图片描述

2 FMCW Radar 原理

  1. Chirp and Frame
    FMCW雷达发射的一组Chirp,称为一个“Frame”
    在这里插入图片描述
  2. 2D-FFT Grid
    对每个天线接收到的数据做2D-FFT,将得到包含距离维和多普勒维的二维网格。网格中的峰值表示在距离下存在目标。
    在这里插入图片描述
  3. Angle-FFT
    通过处理来自多个RX天线的网格中的相应峰值(“角度FFT”),以获得目标的到达角度。
    在这里插入图片描述

3 手势识别处理流程

在这里插入图片描述
算法流程

  1. 2D-FFT
    对每个接收通道的ADC数据进行处理2D-FFT操作,得到包含距离维和多普勒维的2D-FFT matrix。
  2. Noncoherent accumulation/非相干累加
    对多个接收通道的2D-FFT matrix进行非相干累加,得到Range-Doppler Heat map。
  3. Feature Extraction/特征提取
    在Heat map中提取多个特征,每个特征生成时间序列。
  4. Feature processing/特征处理
    对特定时间窗内提取的特征,通过机器学习算法进行分类,输出对应的手势类别。

技术难点

  1. 确认目标位置
    包括:目标的角度和位置
  2. 雷达应具有较高的距离分辨率及角度分辨率
    在Heat map上尽量为点目标。下图中,由于距离、角度分辨率较低,目标进行了发散,传统的峰值检测技术将不再试用。
    在这里插入图片描述
  3. Range-Doppler Heat map中提取特定特征
    可以将特征视为从热图提取的单个数值,其值可反映特定参数的加权平均值;如:平均多普勒,平均距离,多普勒扩展等。
    其中,雷达的每一帧数据为每个特征生成一个值,通过帧序列得到每个特征的时间序列。
  4. 识别和分类
    对于手势识别,在提取了多个特征后,生成特征的时间序列,利用机器学习方法识别和分类各种手势。

特征提取

  1. Weighted Doppler / 加权多普勒
    对于每一帧数据的 Heat map,计算手的速度权重。
    V = ∑ Z i . D i ∑ Z i V=\frac{\sum{Zi.Di}}{\sum{Zi}} V=ZiZi.Di
    其中, i i i为所有的距离数据索引, Z i Zi Zi为Range Doppler Image的值, D i Di Di为第 i i i个索引对应的doppler value。

  2. Instantaneous Energy / 瞬间能量
    检测手的存在
    I = ∑ Z i I=\sum{Zi} I=Zi
    Sum of magnitude of values of RDI data

  3. Weighted Range / 距离加权
    检测手的位置
    V = ∑ Z i . R i ∑ Z i V=\frac{\sum{Zi.Ri}}{\sum{Zi}} V=ZiZi.Ri
    其中, i i i为所有的距离数据索引, Z i Zi Zi为Range Doppler Image的值, R i Ri Ri为第 i i i个索引对应的Range value

  4. Azimuth Angle \ 水平角度
    检测手的水平角度,区分左划和右划手势。

  5. Elevation Angle / 俯仰角度
    检测手的俯仰角度,区分上划和下划手势。

  6. Doppler-Azimuth Correlation / 多普勒方位角相关性
    统计特征:水平角度随速度变化,区分逆时针和顺时针手势。
    C o r r ( V , A ) Corr(V,A) Corr(V,A)

特征分类
利用机器学习的方法,训练人工神经网络模型,实现手势的分类。
在这里插入图片描述
处理流程
在这里插入图片描述

4 手势识别及分析

  1. 左划 / 右划
    当手从左向右划动及从右向左划动时, Azimuth Angle 及 Doppler-Azimuth Correlation 均有明显的变化。
    在这里插入图片描述

  2. 上划 / 下划

当手从上向下划动及从下向上划动时, Elevation Angle 变化趋势明显相反。
在这里插入图片描述
3. 顺时针 / 逆时针
当手顺时针或逆时针转动时,Doppler-Azimuth Correlation分别为正相关和负相关。
在这里插入图片描述

参考链接 https://edu.21ic.com/m/video/3815.html
如有任何问题,欢迎私信讨论交流。

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值