汽车FMCW毫米波雷达信号处理流程

1.简介

毫米波雷达信号处理的作用是:通过发射、接收信号,获得目标径向距离、径向速度、径向角度、RCS等目标属性信息。
在这里插入图片描述
基本流程:AD采样、Range FFT、Doppler FFT、Non-coherent Combing、CFAR、DOA Estimation。

  • 假设每个Chirp采集M个样本点
  • 每一帧发射N个Chirp
  • 假设共有P个采集通道

2. 波形及天线

在这里插入图片描述

  • 假设一帧发射256个Chirp
  • 共4个接收天线,利用MIMO技术虚拟为8个接收通道
    在这里插入图片描述
  • 单个Chirp中频信号采样时间: 20MHz

3. 距离FFT (Range FFT)

Range FFT是为了得到目标的距离信息,将每个Chirp上的AD采样数据进行RangeFFT操作,作为矩阵的行向量进行存储。若共有N个Chirp,则得到N×M的矩阵,每一列称为一个Range Bin。
在这里插入图片描述
若有P个接收通道,则得到一个P×N×M的立方体。
在这里插入图片描述


4. 二维FFT(Doppler FFT)

Doppler FFT是为了得到目标的速度信息,在每一个距离维上,做FFT变换,将得到行向量为距离,列向量为速度的矩阵。
在这里插入图片描述
若有P个接收通道,则得到一个P×N×M的立方体。
在这里插入图片描述


5. 非相干累加(Non-coherent Combing )

由于有多个接收通道,需要做非相关累加,首先对P个复数矩阵的各个元素进行求模,得到幅值矩阵,然后进行累加并求平均。
在这里插入图片描述


6 恒虚警率检测(Constant False Alarm Rate)

由于接收到的回波有时候是干扰,有时候是目标。比如:若需检测运动车辆,则地面杂波、噪声及人为干扰就是干扰项,若对地面某一区域进行成像,那么地面杂波就可看作目标,因此需要对回波进行检测。

检测原理: 恒虚警检测器首先对输入的噪声进行处理后确定一个门限,将此门限与输入端信号相比,如输入端信号超过了此门限,则判为有目标,否则,判为无目标。一般信号由信号源发出,在传播的过程中受到各种干扰,到达接收机后经过处理,输出到检测器,然后检测器根据适当的准则对输入的信号做出判决。
在这里插入图片描述
对得到的幅值矩阵,判断每个值与其周围值的大小关系,进行峰值的搜索,得到带有峰值点标记的幅值矩阵。峰值表示在某距离上存在一定速度的目标,是否为虚假目标需要通过CFAR去判断。在这里插入图片描述

7目标点的角度估算(DOA Estimation)

目标角度的估算一般有两种方法:DBF和MUSIC算法。

在这里插入图片描述

MUSIC (Multiple Signal Classification)算法,即多信号分类算法,由Schmidt等人于1979年提出。MUSIC算法是一种基于子空间分解的算法,它利用信号子空间和噪声子空间的正交性,构建空间谱函数,通过谱峰搜索,估计信号的参数。对于声源定位来说,需要估计信号的DOA。MUSIC算法对DOA的估计有很高的分辨率,且对麦克风阵列的形状没有特殊要求,因此应用十分广泛。具体原理可点击MUSIC算法原理


通过上述步骤即可获得目标的径向距离、径向速度、径向角度、RCS等目标属性信息,若需获得目标的航迹进行预测则需要做进一步的处理。

### FMCW毫米波雷达测角仿真方法 FMCW(Frequency Modulated Continuous Wave)毫米波雷达通过发射频率随时间线性变化的连续波信号来测量目标的距离和角度。在MATLAB Simulink环境下实现FMCW毫米波雷达的角度测量仿真,主要涉及以下几个方面: #### 构建FMCW信号发生器 为了模拟真实的FMCW雷达工作过程,需要先创建一个能够生成特定参数下的FMCW信号的发生器模块。该模块负责按照设定的时间间隔改变发送信号的频率。 ```matlab % 定义FMCW信号的关键参数 f_start = 76e9; % 起始频率 (Hz) Bw = 4e9; % 频带宽度 (Hz) T_chirp = 100e-6;% 单次扫频周期 (s) t = linspace(0, T_chirp, 1000); % 时间向量 f_t = f_start + Bw/T_chirp * t; % 扫描频率函数 ``` #### 设计接收机模型 接收到的目标回波信号会经过混频处理得到差拍信号,此部分可以通过建立虚拟天线阵列并考虑不同入射方向带来的相位差异来进行建模[^1]。 ```matlab lambda = v/f_center; d = lambda / 2; % 天线间距设为半个波长 theta = -30:1:30; % 角度范围 (-30° ~ +30°) N = length(theta); phi = pi*d*sin(pi/180*theta)/lambda; for i=1:N rx_signal(:,i) = exp(-j*2*pi*f_beat*t).*exp(j*phi(i)); end ``` 这里`v`表示光速,`f_center=(f_start+f_stop)/2`为中心频率;而`rx_signal`则代表来自各个角度θ处反射回来后的复数形式电场强度分布情况。 #### 实现DOA估计算法 对于角度估算而言,常用的方法有MUSIC(Multiple Signal Classification),Capon Beamformer等。这些技术可以在已知多个传感器数据的基础上计算出最可能的方向矢量[^3]。 ```matlab Rxx = cov(rx_signal'); % 计算协方差矩阵 [V,D] = eig(Rxx); % 特征分解求解特征值与对应的特征向量 idx = sort(diag(D),'descend'); V = V(:,find(idx>mean(idx),1)); % 提取有效空间中的主导模式分量 angle_estimates = asin((atan(imag(V)./real(V)).*lambda)/(pi*d))*180/pi; ``` 上述代码片段展示了如何利用特征值分析法提取出包含有用信息的空间谱成分,并据此推断出发射源的具体方位。 #### 使用Simulink搭建整体框架 最后一步是在Simulink中集成以上各子系统形成完整的FMCW毫米波雷达标定平台。这不仅有助于直观展示整个实验流程,而且便于后续调整优化各个环节间的交互逻辑关系[^5]。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值