Error = Bias + Variance
Error反映的是整个模型的准确度,Bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精准度,Variance反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性。
区别
Bias:在训练集上的表现,Bias小,则模型可能会比较复杂,泛化性会较差。
Variance:在测试集上的表现,Variance小,模型泛化性较好,但在训练集上结果会比较差。

借鉴
https://www.zhihu.com/question/27068705