热图
文章平均质量分 87
EcoEvoPhylo
Research Interest: Microbial Metagenomics; Fish Genomics and Genetics; Evolutional Genetics; Bioinformatics
展开
-
R统计绘图-环境因子相关性+mantel检验组合图(linkET包介绍1)
linkET是ggcor作者的新包,最常用于绘制结合相关性分析+mantel test绘制相关性组合图。但其实他还有绘制随机森林、热图等功能,绘制出来的图也很美观。后续将分几篇文章介绍linkET包的使用。第一篇先介绍使用的最多的功能-绘制相关性组合图。表1|微生物数据,otu.csv。表2|代谢组数据,met.csv。表3|环境因子数据,env.csv。2. 相关性图图1|环境因子相关性计算结果,cor。图2|默认参数相关性图,cor.p1。图3|调整参数后相关性图,c原创 2022-06-01 23:17:37 · 3694 阅读 · 0 评论 -
R统计绘图-PCA分析绘图及结果解读(误差线,多边形,双Y轴图、球形检验、KMO和变量筛选等)
虽然PCA和RDA分析及绘图都写过教程,但是对于结果的解释都没有写的很详细,刚好最近有人询问怎样使用FactoMineR factoextra包进行PCA分析。所以使用R统计绘图-环境因子相关性热图中的不同土壤环境因子数据进行PCA绘图和结果解读推文。一、 数据准备# 1.1 设置工作路径#knitr::opts_knit$set(root.dir="D:\\EnvStat\\PCA")# 使用Rmarkdown进行程序运行Sys.setlocale('LC_ALL','C') # Rmark原创 2021-12-14 18:47:59 · 4155 阅读 · 1 评论 -
R统计绘图-corrplot热图绘制细节调整2(更改变量可视化顺序、非相关性热图绘制、添加矩形框等)
上一篇文章推送的是怎样调整corrplot热图的可视化参数,以修改字符和图例位置,数据可视化形式和字符小大和颜色等这篇是一个补充部分,记录怎样修改参数以变量排序方式和突出部分数据。本流程还是使用R统计绘图-环境因子相关性热图中的不同土壤环境因子数据进行相关性分析、绘制热图并进行图细节更改。流程开始按下图整理环境因子数据,行为样品名称,列为环境因子名称和分组信息,共有11个环境变量,3个分组信息。图1|环境因子及分组信息表,env.csv。1 设置工作路径并调用R包#设置工作路径#...原创 2021-09-05 18:30:30 · 11319 阅读 · 0 评论 -
R统计绘图-corrplot绘制热图及颜色、字体等细节修改1
有师妹想要更改热图的颜色和字体,想着之前相关性绘图等推文只是使用corrplot默认的颜色绘图,为了帮师妹解惑,今天就写一篇,怎么设置热图颜色和字体等细节到推文。其实看一遍R语言实战|入门3:图形初阶,就可以基本了解R中图形细节的设置。本流程还是使用R统计绘图-环境因子相关性热图中的不同土壤环境因子数据进行相关性分析、绘制热图并进行图细节更改。流程开始按下图整理环境因子数据,行为样品名称,列为环境因子名称和分组信息,共有11个环境变量,3个分组信息。图1|环境因子及分组信息表,env.csv。..原创 2021-09-05 18:02:57 · 16993 阅读 · 5 评论 -
R统计绘图-环境因子相关性热图
1 基本信息本流程是进行不同土壤环境因子相关性分析并绘制热图,流程开始按下图整理环境因子数据,行为样品名称,列为环境因子名称和分组信息,共有11个环境变量,3个分组信息。图1|环境因子及分组信息表,env.csv。2 分析流程2.1 设置工作路径并调用R包# 设置工作路径#knitr::opts_knit$set(root.dir="D:\\EnvStat")# 使用Rmarkdown进行程序运行Sys.setlocale('LC_ALL','C') # Rmarkdown全局原创 2021-08-22 14:11:20 · 10121 阅读 · 2 评论